Cohen d' (one-sample) (es_cohen_d_os)

Author: P. Stikker

Website: https://peterStatistics.com

YouTube: https://www.youtube.com/stikpet

Version: 0.1 (2023-01-31)

Introduction

The es_cohen_d_os function calculates a Cohen d' effect size, used for one-sample situations.

This document contains the details on how to use the functions, and formulas used in them.

1 About the Function

1.1 Input parameters:

- data
 - o Excel: a specific range with the numeric scores
 - o Python: a pandas series with the numeric scores
 - o R: a vector with the numeric scores
- Optional parameters
 - o mu

the hypothesized mean. If not specified the midrange will be used.

o qual

the rule-of-thumb method to use for the classification (see th cohen d for details)

1.2 Output

• d

the effect size measure

classification

classification/qualification of the effect size

Note for Excel:

the array function es_cohen_d_os_arr will require 2 rows and 2 columns.

1.3 Dependencies

- Excel
 - o *th_cohen_d* from *thumb_cohen_d* for the qualification
 - Optional you can run the es_cohen_d_os_addHelp macro so that the function will be available with some help in the 'User Defined' category in the functions overview.
- Python

The following libraries are needed:

- o pandas is needed for data entry and showing the results
- o th_cohen_d from thumb_cohen_d for the qualification
- R
- o th_cohen_d from thumb_cohen_d for the qualification

2 Examples

2.1 Excel

	Α	В	С	D	E	F	G
1 Over_Grade							
2	20						
3	50		hyp. Mean.	70			
4	80						
5	15		Cohen d'				
6	40		value	-0,59534	=es_cohen	_d_os(A2:	A21;D3)
7	85		qual	large	=es_cohen	_d_os(A2:	A21;D3;;C7)
8	30						
9	45		Cohen d'	Qualificat	ion		
10	70		-0,0253334	negligible			
11	60						
12	90		C9:D10 =>	=es_coher	n_d_os_arr	(A2:A21)	
13	25						
14	40						
15	70						
16	65						
17	70						
18	98						
19	40						
20	65						
21	60						

2.2 Python

2.3 R

3 Details of Calculations

$$d' = \frac{|\bar{x} - \mu_{H0}|}{s}$$

To convert this to a regular Cohen's d for interpretation use:

$$d = d' \times \sqrt{2}$$

Symbols:

- \bar{x} the sample mean
- μ_{H0} the hypothesized mean in the population
- s the unbiased sample standard deviation

4 Sources

For the one-sample case (Case 3), we define ever, the latter is readily compensated for. For the one-sample case, use (2.3.3)

the power tables with n and

 $\mathbf{d} = \mathbf{d_3}' \sqrt{2}$.

(Cohen, 1988, p. 46)

References

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). L. Erlbaum

Associates.