

Cohen h2 for one-sample (es_cohen_h2_os)

Author: P. Stikker

Website: https://peterStatistics.com

YouTube: https://www.youtube.com/stikpet

Version: 0.1 (2023-01-05)

Introduction

The $es_cohen_h2_os$ function (and $es_cohen_h2_os_arr$ in VBA) calculates an effect size known as Cohen's h_2 for a one-sample test. This effect size measure can be used with a one-sample binomial test, Wald, or Score test.

This document contains the details on how to use the functions, and formulas used in them.

1 About the Function

1.1 Input parameters:

data

The data to be used. Note for Python this needs to be a pandas data series.

- Optional parameters
 - o codes (default is none)

Two codes for the two categories to be compared. For example, if the data has a list of scores with "national" and "international", the codes used can be exactly those: "national", "international".

This makes it possible to also use a nominal data set (with more than two categories) and then select the two for this test to be used, and keep it in line with a one-sample binomial, Wald, or score test.

o **p0** (default is 0.5)

The hypothesized proportion for the first category (as in codes or found in data).

out (default is "value") – only applies to VBA non-array function
 Choice what to show as result. Either:

"value": show the effect size value

"qual": show the qualification

1.2 Output:

- The **value**, and the **classification**. Except for the non-array version in VBA (Excel) which will only show the requested output via the 'out' parameter.
- The array version in VBA (es_cohen_h2_os_arr) requires two rows and two columns.

1.3 Dependencies

Excel

None.

You can run the **es_cohen_h2_os_addHelp** macro so that the function will be available with some help in the 'User Defined' category in the functions overview.

Python

The following additional libraries will have to be installed:

pandas
 the data input needs to be a pandas data series, and the output is also a pandas dataframe.

math
 the build in library math from Python is needed for the asin function.

R No other libraries required.

2 Examples

2.1 Excel

4	Α	В	С	D	E	F	G	F
1	data							
2	1							
3	2		value	-0,37731	=es_coher	n_h2_os(A	2:A20;;;C3)	
4	2		qual	medium	=es_coher	n_h2_os(A	2:A20;;;C4)	
5	1							
6	2		Cohen h2	Qualificat	ion			
7	2		-0,37731	medium				
8	1							
9	1		C6:D7	=es_coher	n_h2_os_ai	r(A2:A20)		
10	2							
11	2							
12	2							
13	2							
14	2							
15	2							
16	1							
17	2							
18	1							
19	2							
20	2							
21								

2.2 Python

```
[2]: #example
dataList = ['Female', 'Male', 'Female', 'Male', 'Male', 'Female', 'Male', 'Male', 'Male', 'Male', 'Male', 'Male', 'Male', 'Male', 'Female', 'Male', 'Male', 'Male', 'Female', 'Male', 'Female', 'Male', 'Female', 'Male', 'Female', 'Male', 'Male'
```

2.3 R

3 Details of Calculations

3.1 The Effect Size

For one-sample:

$$h_2 = \phi_1 - \phi_{h_0}$$

With

$$\phi_i = 2 \times \arcsin(\sqrt{p_i})$$

$$p_i = RF_i = \frac{F_i}{n}$$

$$n = \sum_{i=1}^k F_i$$

Symbols:

 F_i the (absolute) frequency (count) of category i n the sample size, i.e. the sum of all frequencies p_i the proportion of cases in category i p_{h_0} the expected proportion RF_i the relative frequency of category i

3.2 Interpretation

To convert an h₂ to h use:

$$h = h_2 \times \sqrt{2}$$

Table 1 *Rule of thumb for Cohen h interpretation*

Interpretation			

Note. Adapted from Cohen (1988, pp. 184–185)

4 Source

Cohen's g can be found in *Statistical power analysis for the behavioral sciences* (2nd ed) (Cohen, 1988), on page 147.

(5.2.1)
$$\mathbf{g} = \mathbf{P} - .50 \text{ or } .50 - \mathbf{P}$$
 (directional), and $\mathbf{g} = |\mathbf{P} - .50|$ (nondirectional).

(Cohen, 1988, p. 147)

References

Cohen, J. (1988). *Statistical power analysis for the behavioral sciences* (2nd ed.). L. Erlbaum Associates.