Dominance and VDA-like (es dominance)

Author: P. Stikker

Website: https://peterStatistics.com

YouTube: https://www.youtube.com/stikpet

Version: 0.1 (2023-01-29)

Introduction

The *es_dominance* function calculates a dominance score and a Vargha-Delaney A like effect size measure.

This document contains the details on how to use the functions, and formulas used in them.

1 About the Function

1.1 Input parameters:

- data
 - o Excel: a specific range with the numeric scores
 - Python: a pandas series with the numeric scores
 - o R: a vector with the numeric scores
- Optional parameters
 - hypMed

the hypothesized median. If not specified the midrange will be used.

- out (default is "value") only applies to non-array VBA function
 Choice what to show as result. Either:
 - "dom" (default): the dominance score
 - "vda": a Vargha-Delaney A like measure

1.2 Output

hypMed

The hypothesized median used

dominance

The dominance score

VDA

The Vargha-Delaney A like measure

Note for Excel:

the array function es_dominance_arr will require 2 rows and 3 columns.

1.3 Dependencies

- Excel
 - None, but you can run the es_dominance_addHelp macro so that the function will be available with some help in the 'User Defined' category in the functions overview.
- Python

The following libraries are needed:

- o pandas is needed for data entry and showing the results
- R

None

2 Examples

2.1 Excel

1	Α	В	С	D	Е	F	G
1	Teach_Mc	tivate					
2	1						
3	2		dom	-0,2	=es_domir	nance(\$A\$2	:\$A\$21;;C3)
4	5		vda	0,4	=es_domir	nance(\$A\$2	:\$A\$21;;C4)
5	1						
6	1		hyp. med.	dominanc	VDA (like)		
7	5		3	-0,2	0,4		
8	3						
9	1		C6:E7 =>	=es_domi	nance_arr(A2:A21)	
10	5						
11	1						
12	1						
13	5						
14	1						
15	1						
16	3						
17	3						
18	3						
19	4						
20	2						
21	4						
22							

2.2 Python

2.3 R

3 Details of Calculations

$$Dominance = p_{+} - p_{-}$$

$$VDA_{like} = \frac{Dominance + 1}{2}$$

Symbols

- ullet p_+ is the proportion of cases above the hypothesized median
- p_{-} is the proportion of cases below the hypothesized median

Note

The VDA is short for 'Vargha Delaney A', but this measure is actually different and uses the Wilcoxon test statistic.

4 Sources

Effect size statistics

One way to assess the effect size after a one-sample sign test is to use a dominance statistic. This statistic simply looks at the proportion of observations greater than the default median value minus the proportion of observations less than the default median value. A value of 1 would indicate that all

223

SIGN TEST FOR ONE-SAMPLE DATA

SUMMARY AND ANALYSIS OF EXTENSION EDUCATION PROGRAM EVALUATION IN R

observations are greater than the default median, and a value of -1 would indicate that all observations are less than the default median. A value of 0 indicates that the number of observations greater than the default median are equal to the number that are less than the default median.

A VDA-like statistic can be calculated as Dominance / 2 + 0.5. This statistic varies from 0 to 1, with 0.5 being equivalent to a dominance value of 0.

Note that neither of these statistics take into account values tied to the default median value.

(Mangiafico, 2016, pp. 223-224)

References

Mangiafico, S. S. (2016). Summary and analysis of extension program evaluation in R (1.20.01).

Rutger Cooperative Extension.