Hedges g (one-sample) (es_hedges_g_os)

Author: P. Stikker

Website: https://peterStatistics.com

YouTube: https://www.youtube.com/stikpet

Version: 0.1 (2023-02-03)

Introduction

The es_hedges_g_os function calculates a Hedges g effect size, for one-sample situations.

This document contains the details on how to use the functions, and formulas used in them.

1 About the Function

1.1 Input parameters:

- data
 - o Excel: a specific range with the numeric scores
 - o Python: a pandas series with the numeric scores
 - R: a vector with the numeric scores
- Optional parameters
 - o mu

the hypothesized mean. If not specified the midrange will be used.

o appr

The approximation to use either:

- "none" for exact method. Note that if df/2 > 171 the Xue approximation will be used.
- "hedges" for the Hedges approximation
- "durlak" for the Durlak approximation
- "xue" for the Xue approximation
- qual

the rule-of-thumb method to use for the classification (see th_cohen_d for details)

1.2 Output

• 8

the effect size measure

classification

classification/qualification of the effect size

version

the version used in the calculation

Note for Excel:

the array function es_hedges_g_os_arr will require 2 rows and 3 columns.

1.3 Dependencies

Excel

- o *th_cohen_d* from *thumb_cohen_d* for the qualification
- Optional you can run the es_hedges_g_os_addHelp macro so that the function will be available with some help in the 'User Defined' category in the functions overview.

• Python

The following libraries are needed:

- o pandas is needed for data entry and showing the results
- th_cohen_d from thumb_cohen_d for the qualification

• R

o *th_cohen_d* from *thumb_cohen_d* for the qualification

2 Examples

2.1 Excel

	A	В	С	D	Е	F	G	Н
1	Over_Grad	le						
2	20							
3	50		hyp. Mean.	70				
4	80							
5	15			appr				
6	40		out	exact	hedges	durlak	xue	
7	85		value	-0,57147	-0,571523	-0,540921	-0,571469	
8	30		qual	large	large	medium	large	
9	45							
10	70		D7 =>	=es_hedge	es_g_os(\$A	\$2:\$A\$21;\$	D\$3;D\$6;;\$	C 7)
11	60							
12	90		Hedges g		comment			
13	25		-0,0243178	negligible	exact			
14	40							
15	70		C12:E13 =>	=es_hedge	es_g_os_ar	r(A2:A21)		
16	65							
17	70							
18	98							
19	40							
20	65							
21	60							

2.2 Python

```
[1]: from eff_size_hedges_g_os import es_hedges_g_os
   import pandas as pd
   dataList = [20, 50, 80, 15, 40, 85, 30, 45, 70, 60, 90, 25, 40, 70, 65, 70, 98, 40,
   data = pd.Series(dataList)
   es_hedges_g_os(data)
   4
    Hedges g Classification Version
    0 -0.024318
                   negligible
[2]: es_hedges_g_os(data, mu=70)
[2]: Hedges g Classification Version
    0 -0.571469
                very large exact
[3]: es_hedges_g_os(data, appr="hedges")
[3]: Hedges g Classification
                                        Version
    0 -0.02432
                negligible Hedges approximation
[4]: es_hedges_g_os(data, appr="durlak")
[4]: Hedges g Classification
                                       Version
    0 -0.023018
                  negligible Durlak approximation
[5]: es_hedges_g_os(data, appr="xue")
[5]: Hedges g Classification
                                     Version
    0 -0.024318 negligible Xue approximation
```

2.3 R

3 Details of Calculations

3.1 Exact

$$g = d' \times \frac{\Gamma(m)}{\Gamma\left(m - \frac{1}{2}\right) \times \sqrt{m}}$$

With:

$$m = \frac{df}{2}$$

$$df = n - 1$$

Symbols:

- d' is Cohen's d for one-sample (see section Error! Reference source not found.)
- *df* is the degrees of freedom
- *n* is the sample size
- $\Gamma(...)$ the gamma function

3.2 Hedges approximation

$$g \approx d' \times \left(1 - \frac{3}{4 \times df - 1}\right)$$

With:

$$df = n - 1$$

Symbols:

- d' is Cohen's d for one-sample (see section Error! Reference source not found.)
- *df* is the degrees of freedom
- *n* is the sample size

3.3 Durlak approximation

$$g \approx d' \times \frac{n-3}{n-2.25} \times \sqrt{\frac{n-2}{n}}$$

Symbols:

- d' is Cohen's d for one-sample (see section Error! Reference source not found.)
- *n* is the sample size

3.4 Xue approximation

$$g \approx d' \times \sqrt[12]{1 - \frac{9}{df} + \frac{69}{2 \times df^2} - \frac{72}{df^3} + \frac{687}{8 \times df^4} - \frac{441}{8 \times df^5} + \frac{247}{16 \times df^6}}$$

With:

$$df = n - 1$$

Symbols:

- d' is Cohen's d for one-sample (see section Error! Reference source not found.)
- *df* is the degrees of freedom

4 Sources

$$c(m) = \frac{\Gamma(\frac{m}{2})}{\sqrt{\frac{m}{2}} \Gamma(\frac{m-1}{2})} .$$
 (6e)

(Hedges, 1981, p. 111)

Note that Hedges use m for the degrees of freedom.

packaged computer programs. The approximation is
$$c(m) \approx 1 - \frac{3}{4m-1}$$

(Hedges, 1981, p. 114)

(1) Calculating Hedges' g from means, standard deviations and ns

$$g = \frac{M_E - M_C}{SD \text{ pooled}} \times \left(\frac{N - 3}{N - 2.25}\right) \times \sqrt{\frac{N - 2}{N}}$$

(Durlak, 2009, p. 927)

$$(2.14) J(m) \approx P_6(m) = \sqrt[12]{1 - \frac{9}{m} + \frac{69}{2m^2} - \frac{72}{m^3} + \frac{687}{8m^4} - \frac{441}{8m^5} + \frac{247}{16m^6}}$$

(Xue, 2020, p. 3)

References

Durlak, J. A. (2009). How to select, calculate, and interpret effect sizes. *Journal of Pediatric*

Psychology, 34(9), 917-928. https://doi.org/10.1093/jpepsy/jsp004

Hedges, L. V. (1981). Distribution Theory for Glass's Estimator of Effect Size and Related Estimators.

Journal of Educational Statistics, 6(2), 107-128. https://doi.org/10.2307/1164588

Xue, X. (2020). Improved approximations of Hedges' g*. https://doi.org/10.48550/arXiv.2003.06675