Johnston-Berry-Mielke E (es_jbm_e)

Author: P. Stikker

Website: https://peterStatistics.com

YouTube: https://www.youtube.com/stikpet

Version: 0.2 (2023-01-13)

Introduction

The es_jbm_e function calculates the effect size Johnston-Berry-Mielke E.

This document contains the details on how to use the functions, and formulas used in them.

1 About the Function

1.1 Input parameters:

• chi2

the chi-square test statistic.

• n

the sample size

minExp

the minimum expected count of the expected counts for the different categories

- Optional parameters
 - o **test** (default is "chi") Either:
 - "chi": for chi-square based tests
 - "likelihood": for likelihood ratio tests

1.2 Output

Value

The Johnston-Berry-Mielke E value

Classification

A classification of the value by converting it to Cohen's w. This only is shown for chi-square based tests. With Excel this is only used in the array function

1.3 Dependencies

Excel

None.

You can run the **es_jbm_e_addHelp** macro so that the function will be available with some help in the 'User Defined' category in the functions overview.

• Python

The log function from Python's math library is used.

• R

No other libraries required.

2 Examples

2.1 Excel

_ A	В	С	D		
1					
2					
3	chi-square value:		3,105263		
4	sample size:		19		
5	min. expected count:		4,75		
6					
7	test	JBM E			
8	chi	0,0544783	=es_jbm_e	(D3;D4;D5	;B8)
9	likelihood	0,05894668	=es_jbm_e	(D3;D4;D5	;B9)
10					
11	JBM E	Qualification	1		
12	0,0544783	medium			
13					
14	B11:C12	=es_jbm_e_	arr(D3;D4;[05)	
15					

2.2 Python

```
[2]: chi2Value = 3.105263
n = 19
minExp = n/4
es_jbm_e(chi2Value, n, minExp)

[2]: JBM E Classification
0 0.054478 medium

[3]: es_jbm_e(chi2Value, n, minExp, test="likelihood")

[3]: 0.05894667803626296
```

2.3 R

3 Details of Calculations

3.1 The Effect Size

For a chi-square:

$$E_{\chi_{GoF}^2} = \frac{q}{1 - q} \times \left(\left(\sum_{i=1}^k \frac{p_i^2}{q_i} \right) - 1 \right) = \frac{\chi_{GoF}^2 \times E_{min}}{n \times (n - E_{min})}$$

For a Likelihood ratio:

$$E_L = -\frac{1}{\ln(q)} \times \sum_{i=1}^k \left(p_i \times \ln\left(\frac{p_i}{q_i}\right) \right) = -\frac{1}{\ln(q)} \times \frac{\chi_L^2}{2n}$$

Symbols used:

- q the minimum of all q-i's
- q_i the expected proportion in category i
- *k* the number of categories

3.2 Interpretation

For chi-square based test the interpretation is done by conversion to Cohen's w:

$$w = \sqrt{\frac{E_{\chi^2_{GOF}} \times (1 - q)}{q}}$$

Then the interpretation table from Cohen's w can be used.

Cohen's classification for his w:

small: **w** = .10, medium: **w** = .30, large: **w** = .50.

(Cohen, 1988, p. 227)

Proof

Cohen's w is defined as:

$$w = \sqrt{\frac{\chi_{GoF}^2}{n}}$$

$$\sqrt{\frac{E_{\chi_{GoF}^2} \times (1-q)}{q}} = \sqrt{\frac{\frac{\chi_{GoF}^2 \times E_{min}}{n \times (n-E_{min})} \times (1-q)}{q}} = \sqrt{\frac{\chi_{GoF}^2 \times E_{min} \times (1-q)}{n \times (n-E_{min}) \times q}}$$

$$= \sqrt{\frac{\chi_{GoF}^2 \times E_{min} \times \left(1 - \frac{E_{min}}{n}\right)}{n \times (n-E_{min}) \times \frac{E_{min}}{n}}} = \sqrt{\frac{\chi_{GoF}^2 \times E_{min} \times (n-E_{min})}{n}}{(n-E_{min}) \times E_{min}}} = \sqrt{\frac{\chi_{GoF}^2}{n}} = w$$

Q.E.D.

4 Sources

Johnston, Berry, and Mielke describe this E in *Measures of effect size for chi-squared and likelihood-ratio goodness-of-fit tests*.

$$E_{\chi^2} = \frac{q}{1 - q} \left(\sum_{i=1}^k \frac{p_i^2}{q_i} - 1 \right)$$
 [5]

and

$$E_L = -\frac{1}{\ln(q)} \sum_{i=1}^{k} p_i \ln\left(\frac{p_i}{q_i}\right),$$
 [6]

(Johnston et al., 2006, p. 413)

References

Cohen, J. (1988). *Statistical power analysis for the behavioral sciences* (2nd ed.). L. Erlbaum Associates.

Johnston, J. E., Berry, K. J., & Mielke, P. W. (2006). Measures of effect size for chi-squared and likelihood-ratio goodness-of-fit tests. *Perceptual and Motor Skills*, *103*(2), 412–414. https://doi.org/10.2466/pms.103.2.412-414