Rosenthal Correlation Coefficient (es_rosenthal)

Author: P. Stikker

Website: https://peterStatistics.com

YouTube: https://www.youtube.com/stikpet

Version: 0.1 (2023-01-29)

Introduction

The es rosenthal function calculates a Rosenthal Correlation Coefficient.

This document contains the details on how to use the functions, and formulas used in them.

1 About the Function

1.1 Input parameters:

zVal

the z-value statistic from a test

r

the total sample size

- Optional parameters
 - o qual

the rule-of-thumb to be used for the qualification/classification. See the function *th pearson r* for details and options (default is "bartz".

- out (default is "value") only applies to non-array VBA function
 Choice what to show as result. Either:
 - "value" (default): value of the effect size
 - "qual": the qualification

1.2 Output

• |

The effect size value

qualification

The qualification using the specified rule of thumb

Note for Excel:

the array function es_rosenthal_arr will require 2 rows and 2 columns.

1.3 Dependencies

- Excel
 - The additional function 'th_pearson_r' for the rule-of-thumb interpretation is needed.

 You can run the es_rosenthal_addHelp macro so that the function will be available with some help in the 'User Defined' category in the functions overview.

• Python

The following libraries are needed:

- o pandas is needed for data entry and showing the results
- o *th_pearson_r* for the rule-of-thumb interpretation is needed
- R
 th_pearson_r for the rule-of-thumb interpretation is needed.

2 Examples

2.1 Excel

1	А	В	С	D	Е	F
1						
2						
3						
4		Z	1,143943			
5		n	20			
6						
7			0,2557934	=es_rosen	thal(C4;C5)	
8			low	=es_rosen	thal(C4;C5	;;"qual")
9						
10		Rosenthal (Qualification			
11		0,2557934	low			
12						
13		B10:C11 =>	=es_rosenthal_arr(C4;C5)			
11						

2.2 Python

```
1]: from eff_size_rosenthal import es_rosenthal from thumb_pearson_r import th_pearson_r import pandas as pd

z = 1.143943
n = 20
es_rosenthal(z, n)

1]: Rosenthal corr. Classification

0 0.255793 low
```

2.3 R

3 Details of Calculations

$$r = \frac{z}{\sqrt{n}}$$

Symbols:

- n the sample size
- z the calculated z-statistic value.

Source:

4 Sources

Unclear if this is the original source, but it's the oldest I could find:

$$r = \sqrt{\frac{Z^2}{N}} = \frac{Z}{\sqrt{N}}$$
 [2.18]

(Rosenthal, 1991, p. 19)

References

Rosenthal, R. (1991). Meta-analytic procedures for social research (Rev. ed). Sage Publications.