
 

(by P. Stikker) 

Multinomial Goodness-of-Fit Test 
(ts_multinomial_gof) 
Author: P. Stikker 

Website: https://peterStatistics.com  

YouTube: https://www.youtube.com/stikpet 

Version: 0.1 (2023-01-12) 

Introduction 
The ts_multinomial_gof function (and ts_multinomial_gof_arr in VBA) performs an exact Goodness-

of-Fit test. The test could be used to compare the proportions from different categories. The null-

hypothesis is roughly that the proportions are all the same. If the p-value is too small (usually below 

0.05) the assumption is rejected, indicating that at least two categories will have a different 

proportion in the population. 

This document contains the details on how to use the functions, and formulas used in them. 

1 About the Function 

1.1 Input parameters: 
• data 

The data to be used. Note for Python this needs to be a pandas data series. 

 

• Optional parameters 

o expCount (default is none) 

A table with two columns. One with the categories and another with the expected 

counts. In Pandas this needs to be a dataframe. 

 

o out (default is “pvalue”) – only applies to VBA ts_multinomial_gof 

Choice what to show as result. Either: 

▪ “pvalue”: show the p-value (significance) 

▪ “pobs”: the probability of the observed data 

▪ “ncomb”: the number of possible combinations with equal sum as in the 

data 

  

https://peterstatistics.com/
https://www.youtube.com/stikpet


 

(by P. Stikker) 

1.2 Output: 
• p-obs. The probability of the observed data 

• n comb. The number of combinations with an equal sum as the observed data 

• p-value. The two-sided significance (p-value) of the test 

• test used. Except for the non-array version in VBA (Excel) which will only show the requested 

p-value. 

 

• The array version in VBA (ts_multinomial_gof_arr) requires two rows and four columns. 

1.3 Dependencies 
• Excel 

The function makes use of the Excel functions COUNTIF, ROUNDDOWN, MULTINOMIAL, and 

FACT.  

You can run the ts_multinomial_gof_addHelp macro so that the function will be available 

with some help in the ‘User Defined’ category in the functions overview. 

 

• Python 

The following additional libraries will have to be installed/loaded: 

o pandas as pd 

the data input needs to be a pandas data series, and the output is also a pandas 

dataframe. 

 

o itertools as it 

the product function from Python’s itertools library is needed 

 

o numpy as np 

the arrange, asarray, and sum functions are used 

 

o scipy.stats 

the multinomial function is used. 

 

• R 

No other libraries required. 

 



 

(by P. Stikker) 

2 Examples 

2.1 Excel 

 

  



 

(by P. Stikker) 

2.2 Python 

 

2.3 R 

 

  



 

(by P. Stikker) 

3 Details of Calculations 
The test can be done using the following four steps: 

1. Determine the probability of the observed counts using the probability mass function of the 

multinomial distribution. 

𝑝𝑚𝑓(𝐹1, 𝐹2…𝐹𝑘; 𝑝1, 𝑝2…𝑝𝑘) =
𝑛!

∏ 𝐹𝑖!
𝑘
𝑖=1

×∏𝑝𝑖
𝐹𝑖

𝑘

𝑖=1

 

With: 

𝑛 =∑𝐹𝑖

𝑘

𝑖=1

 

∑𝑝𝑖

𝑘

𝑖=1

= 1 

 

2. Determine all possible permutations with repetition that create a sum equal to the sample 

size over the k-categories. 

 

3. Determine the probability of each of these permutations using the probability mass function 

of the multinomial distribution. 

 

4. Sum all probabilities found in step 3 that are equal or less than the one found in step 1. 

Step 2 is quite tricky. We could create all possible permutations with replacement. If our sample size 

is 𝑛 and the number of categories is 𝑘, this gives (𝑛 + 1)𝑘 permutations. The ‘+ 1’ comes from the 

option of 0 to be included. Most of these permutations will not sum to the sample size, so they can 

be removed. 

If the expected probability for each category is the same, we could use another approach. We could 

then create all possible combinations with replacement. This would give fewer results: 

(
𝑛 + 𝑘

𝑘
) =

(𝑛 + 𝑘)!

𝑛! 𝑘!
 

Again we can then remove the ones that don’t sum to the sample size. Then perform step 3, but now 

multiply each by how many variations this can be arranged in. If for example we have 5 categories, 

and a total sample size of 20, one possible combination is [2, 2, 3, 3, 10]. This would be the same as  

[2, 3, 3, 2, 10], [2, 3, 10, 2, 3], etc. We could determine the count (frequency) of each unique score, 

so in the example 2 has a frequency of 2, 3 also and 10 only one. Now the first 2 we can arrange in: 

(
5

2
) =

5!

(5 − 2)! 2!
= 10 

The 5 is our number of categories, the 2 the frequency. For the two 3’s we now have 5 – 2 = 3 spots 

left, so those can only be arranged in: 

(
3

2
) =

3!

(3 − 2)! 2!
= 3 

Combining these 3 with the 10 we had earlier gives 3 × 10 = 30 possibilities. The single 10 only can 

now go to one spot so that’s it. 



 

(by P. Stikker) 

In general, if we have 𝑘 categories, 𝑚 different values and 𝐹𝑖 is the i-th frequency of those values, 

sorted from high to low, we get:  

(
𝑘

𝐹1
)∏(

𝑘 − ∑ 𝐹𝑗
𝑚−𝑖+1
𝑗=1

𝐹𝑗
)

𝑚

𝑖=2

= (
𝑘

𝐹1
) (
𝑘 − 𝐹1
𝐹2

)(
𝑘 − ∑ 𝐹𝑗

2
𝑗=1

𝐹3
)…(

𝑘 − ∑ 𝐹𝑗
𝑚−1
𝑗=1

𝐹𝑘
) 

Where: 

(
𝑎

𝑏
) =

𝑎!

(𝑎 − 𝑏)! 𝑏!
 

Symbols used: 

• 𝑘 the number of categories 

• 𝐹𝑖 the (absolute) frequency of category i 

• 𝐸𝑖  the expected frequency of category i 

• 𝑛 the sample size, i.e. the sum of all frequencies 

 


