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Introduction

The test_pearson_gof function (and test_pearson_gof arrin VBA) performs a Pearson chi-square
Goodness-of-Fit test. The test could be used to compare the proportions from different categories.
The null-hypothesis is roughly that the proportions are all the same. If the p-value is too small
(usually below 0.05) the assumption is rejected, indicating that at least two categories will have a
different proportion in the population.

This document contains the details on how to use the functions, and formulas used in them.

1 About the Function

1.1 Input parameters:

e data
The data to be used. Note for Python this needs to be a pandas data series.

e Optional parameters
o expCount (default is none)
A table with two columns. One with the categories and another with the expected
counts. In Pandas this needs to be a dataframe.

o cc (default is none)
which (if any) continuity correction to use. Either
=  “none”: no correction
=  ‘“yates”: Yates
=  “pearson”: E.S. Pearson
= “williams”: Williams

o out (default is “pvalue”) — only applies to VBA test_pearson_gof
Choice what to show as result. Either:
= “pvalue”: show the p-value (significance)
= “df”: the degrees of freedom
= “statistic”: show the test-statistic used
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1.2 Output:

The test-statistic (chi-square value), degrees of freedom, p-value and test used. Except for
the non-array version in VBA (Excel) which will only show the requested Alternative Ratio.

The array version in VBA (test_pearson_gof _arr) requires two rows and four columns.

1.3 Dependencies

Excel

None.

You can run the test_pearson_gof_addHelp macro so that the function will be available with
some help in the ‘User Defined’ category in the functions overview.

Python
The following additional libraries will have to be installed:
o pandas
the data input needs to be a pandas data series, and the output is also a pandas
dataframe.
R

No other libraries required.

2 Examples

2.1 Excel

Ll Marital Expected counts
) MARRIED MARRIED 5
=Ml DIVORCED DIVORCED &
) MARRIED NEVER MARRIED 5
el SEPARATED SEPARATED &
2:0) DIVORCED
A NEVER MARRIED E10= =ts_pearson_gof(SAS2:5A520;;5D10;ES9)
=0 DIVORCED
gl D1VORCED cc statistic  df pvalue
Wi NEVER MARRIED none 3,105263 3 0,375679
SN MARRIED yates 1,842105 3 0,605816

S MARRIED pearson | 2,941828 3 0,400681
Bk MARRIED williams 2,97479 3 0,395528
B3 SEPARATED
EN DIVORCED 0,375679 =ts_pearson_gof(A2:A20;C2:D5)
4:§ NEVER MARRIED
EEA NEVER MARRIED statistic  df p-value test
fk:l DIVORCED 3,105263 3 0,375679 Pearson chi-square test of goodness-of-fit
8 DIVORCED
i} MARRIED D12:G13 =ts_pearson_gof arr{A2:A20)
21
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2.2 Python

[286]:  data = pd.DataFrame(["MARRIED", "DIVORCED", "MARRIED", "SEPARATED", "DIVORCED",

"NEVER MARRIED", "DIVORCED"™, "DIVORCED", "NEVER MARRIED",

"MARRIED", "MARRIED", "MARRIED", "SEPARATED", "DIVORCED",

"NEVER MARRIED", "NEVER MARRIED", “DIVORCED", "DIVORCED", "MARRIED"],
columns=["marital"])

[287]: | ts_pearson_gof(data)

[287] statistic df p-value test

0 3105263 3 0375679 Pearson chi-square test of goodness-of-fit

'eount' : [5,5,5,5]})
te_pearson_gof(data, eCounts)

[288] statistic df p-value test

0 3105263 3 0375679 Pearson chi-square test of goodness-of-fit

[280]: | ts_pearson_gof (data, cc="pearson")

[289] statistic df p-value test

0 2941828 3 0400681 Pearson chi-square test of goodness-of-fit, with E. Pearson continuity correction

eCounts = pd.DataFrame({'category' : ["MARRIED", "DIVORCED", "NEVER MARRIED", "SEPARATED"],

23 R

Vo= R o o

v

data <- c("MARRIED", "DIVORCED", "MARRIED", "SEPARATED", "DIVORCED",
"NEVER MARRIED", "DIVORCED", "DIVORCED", "NEVER MARRIED",
"MARRIED", "MARRIED", "MARRIED", "SEPARATED", "DIVORCED",
"MEVER MARRIED", "NEVER MARRIED", "DIVORCED", "DIVORCED", "MARRIED")
eCounts = data.frame(c("MARRIED", "DIVORCED", "MEVER MARRIED", "SEPARATED"), <(5,5,5,5))
ts_pearson_gof(data)
chival df pval testUsed
3.105263 3 0.3756787 Pearson chi-square test of goodness-of-fit
ts_pearson_gof(data, cc="yates")
chival df pval

testUsed

1.842105 3 0.6058155 Pearson chi-square test of goodness-of-fit , with Yates continuity correction

ts_pearson_gof(data, eCounts)
chival df pval testUsed
3.105263 3 0.3756787 Pearson chi-square test of goodness-of-fit
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3 Details of Calculations

3.1 The Original Test
The Pearson chi-square test uses:

k

2 _ (Fl - Ei)z
XP.GoF = — E
i=1 ¢
df =k—-1

sig.=1 _XZ(XI%.GOF' af)

Note that if the expectation about the population, is that all categories have the same frequency,
then:
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Symbols used:

e [k the number of categories

e F; the (absolute) frequency of category i

e [, the expected frequency of category i

e nthe sample size, i.e. the sum of all frequencies

e x?(...) the chi-square cumulative density function

3.2 Yates Continuity Correction
This correction is usually only recommended if the degrees of freedom is two. For a goodness-of-fit
test this means only if you have two categories.

k
2 _Z(lFi_Eil —0.5)?
XpP-y.GoF = . E.
i=1

i

3.3 E.S. Pearson correction
n—1

2 _ 2
XP—EP.GoF = X Xp.GoF
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3.4 Williams correction

2
2 XP.GoF
XP-W.GoF = —q
With:
-1+ k-1
1= T e xnxdf

If df = k — 1 (which usually is the case with a GoF test, except if you have an intrinsic null
hypothesis), the formula can be simplified to:

q=1+

6Xn

4 Sources
Pearson described this test in an article in Philosophical Magazine Series 5 (K. Pearson, 1900).

Yates describes this for a 2x2 table:

[ - rr
tribution. This is equivalent to computing the values of %2 for devia-
tions half a unit less than the true deviations, 8 successes, for example,
heing reckoned as 74, 2 as 24. This correction may be styled the
correcltion for continuify, and the resultant value of 3 denoted by '

Il i FR i I il i 1. 1 L1 1. i (PR F T LA Y

(Yates, 1934, p. 222)

The Pearson correction is found as:

and m+n = N.* It is seen that the ratio d/s; is identical with the ratio « of equation (22),
except for a factor (J[(N —1)/N] which is unimportant in large samples. Thus the classical
test is practically identical with that suggested in paras. 40-42 above, though the two tests
are differently derived.

(E. S. Pearson, 1947, p. 157)

The Williams correction is from Williams (1976)

1 . s
g=1 +om (sum of reciprocals of expected cell frequencies

—sums of expectations of marginal frequencies in the numerators of the maximum
likelihood estimators

+sums of expectations of marginal frequencies in the denominators of the maximum
likelihood estimators).

In general ¢ is a function of the expected frequencies. To determine a numerieal value for ¢
these expected frequencies must in practice be replaced by their maximum likelihood
estimators.

A much easier alternative is to use the minimum value g, of g given by

Tmm = 1 +P(a?, b2, ... )[(6vn),

where ¢(a, b, ...) is the deviance degrees of freedom v expressed as a funetion of the factor
levels a, b, .... The difference hetween ¢ and gy, will often be small, and the use of ¢ = ¢y

(Williams, 1976, p. 36)

The formula used is adopted from McDonald (2014).
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