One-Sample Sign Test (ts_sign_os)

Author: P. Stikker

Website: https://peterStatistics.com

YouTube: https://www.youtube.com/stikpet

Version: 0.1 (2023-01-26)

Introduction

The *ts_sign_os* function performs one-sample sign test.

This document contains the details on how to use the functions, and formulas used in them.

1 About the Function

1.1 Input parameters:

data

the data as numbers.

- Excel as a fixed range,
 - o Python as a pandas data series
 - R as a vector

Optional parameters

hypMed

the hypothesized median to be used. The default will use the mid-range of the data

1.2 Output

pVal

The p-value (significance) of the test, two tailed

testUsed

A description of the test used

Note for Excel:

the array function *ts_sign_os_arr* will require 2 rows and 2 columns.

1.3 Dependencies

Excel

None.

You can run the **ts_sign_os_addHelp** macro so that the function will be available with some help in the 'User Defined' category in the functions overview.

Python

The following libraries are needed:

- o <u>pandas</u> is needed for data entry and showing the results.
- The <u>binom</u> function from <u>scipy</u>'s library <u>stats</u> for the binomial distribution

• R

No other libraries required.

2 Examples

2.1 Excel

4	А	В	С	D	E	F
1	Teach_Mo	tivate				
2	1					
3	2		0,45449829	=ts_sign_os(A	\2:A21)	
4	5					
5	1		2	0,814529419	=ts_sign_os(A	A2:A21;C5)
6	1					
7	5		p-value	test		
8	3		0,45449829	one-sample sign test		
9	1					
10	5		C7:D8 =>	=ts_sign_os_a	arr(A2:A21)	
11	1					
12	1					
13	5					
14	1					
15	1					
16	3					
17	3					
18	3					
19	4					
20	2					
21	4					

2.2 Python

```
dataList = [1, 2, 5, 1, 1, 5, 3, 1, 5, 1, 1, 5, 1, 1, 3, 3, 3, 4, 2, 4]

data = pd.Series(dataList)

ts_sign_os(data)

p-value
test

0 0.454498 one-sample sign test

ts_sign_os(data, hypMed=2)

p-value
test

0 0.814529 one-sample sign test
```

2.3 R

(by P. Stikker)

3 Details of Calculations

$$sig. = 2 \times B\left(n, \min(n_+, n_-), \frac{1}{2}\right)$$

Symbols

- B(...) is the binomial cumulative distribution function
- *n* is the number of cases
- n_{+} is the number of cases above the hypothesized median
- n_{-} is the number of cases below the hypothesized median
- min is the minimum value of the two values

4 Source

The test is described in Stewart (1941), although there might be earlier uses:

1. Introduction. Let us consider a set of N non-zero differences, of which x are positive and N-x are negative; and suppose that the hypothesis tested, H_0 , implies, in independent sampling, that x will be distributed about an expected value of N/2 in accordance with the binomial $(\frac{1}{2} + \frac{1}{2})^N$. As a quick test of H_0 , we may choose to test the hypothesis h_0 that x has the above probability distribution. Defining r to be the smaller of x and x and x and the test consists in rejecting x and therefore x whenever x is determined by x and the significance level x.

(Stewart, 1941, p. 236)

References

Stewart, W. M. (1941). A note on the power of the sign test. The Annals of Mathematical Statistics,

12(2), 236-239. https://doi.org/10.1214/aoms/1177731755