One-Sample Student t-Test (ts_student_t_os)

Author: P. Stikker

Website: https://peterStatistics.com

YouTube: https://www.youtube.com/stikpet

Version: 0.1 (2023-01-31)

Introduction

The ts student t os function calculates a one-sample Student t-test.

This document contains the details on how to use the functions, and formulas used in them.

1 About the Function

1.1 Input parameters:

- data
 - o Excel: a specific range with the numeric scores
 - o Python: a pandas series with the numeric scores
 - o R: a vector with the numeric scores
- Optional parameters
 - o mu

the hypothesized mean. If not specified the midrange will be used.

1.2 Output

• mu

The hypothesized mean

sample.mean

The mean from the sample data

statistic

The t-value

df

The degrees of freedom

p-value

The two-tailed significance of the test (p-value)

testUsed

The test used

Note for Excel:

the array function *ts_student_t_os_arr* will require 2 rows and 6 columns.

1.3 Dependencies

- Excel
 - None, but you can run the ts_student_t_os_addHelp macro so that the function will be available with some help in the 'User Defined' category in the functions overview.

Python

The following libraries are needed:

- o pandas is needed for data entry and showing the results
- R
 None

2 Examples

2.1 Excel

	А	В	С	D	E	F	G	н	
1 Over_Grade									
2	20								
3	50								
4	80		hyp. Mean:	56,5					
5	15								
6	40		pvalue	0,910986	=ts_student_t_os(\$A\$2:\$A\$21;\$D\$4)				
7	85		mu	56,5	=ts_student_t_os(\$A\$2:\$A\$21;\$D\$4;C7)				
8	30		df	19	=ts_student_t_os(\$A\$2:\$A\$21;\$D\$4;C8)				
9	45		statistic	-0,11329	=ts_student_t_os(\$A\$2:\$A\$21;\$D\$4;C9)				
10	70								
11	60		H0 mean	sample m	t-value	df	p-value	test	
12	90		56,5	55,9	-0,113295	19	0,910986	one-samp	le Student t
13	25								
14	40		C11:H12 =>	=ts_stude	nt_t_os_arr	(A2:A21)			
15	70								
16	65								
17	70								
18	98								
19	40								
20	65								
21	60								

2.2 Python

```
[1]: from test_student_t_os import ts_student_t_os

#import pandas as pd

#from statistics import mean, stdev

#from scipy.stats import t

data = [20, 50, 80, 15, 40, 85, 30, 45, 70, 60, 90, 25, 40, 70, 65, 70, 98, 40, 65, 60]

ts_student_t_os(data)

[1]: mu sample mean statistic df p-value test used

0 56.5 55.9 -0.113295 19 0.910986 one-sample Student t

[2]: ts_student_t_os(data, mu=70)

[2]: mu sample mean statistic df p-value test used

0 70 55.9 -2.662423 19 0.015385 one-sample Student t
```

2.3 R

3 Details of Calculations

The two-sided p-value can be obtained by:

$$sig = 2 \times (1 - T(|t|, df))$$

With:

$$t = \frac{\bar{x} - \mu_{H0}}{SE}$$
$$df = n - 1$$
$$SE = \frac{s}{\sqrt{n}}$$

Symbols:

- T the cumulative distribution function of the t-distribution
- \bar{x} the sample mean
- μ_{H0} the hypothesized mean in the population
- SE the standard error (i.e. the standard deviation of the sampling distribution)
- *df* the degrees of freedom
- *n* the sample size (i.e. the number of scores)
- s the unbiased sample standard deviation

4 Sources

The Student t test (Student, 1908) was described by Gosset under the pseudo name Student.

References

Student. (1908). The probable error of a mean. Biometrika, 6(1), 1–25.

https://doi.org/10.1093/biomet/6.1.1