Module stikpetP.other.thumb_biserial

Expand source code
import pandas as pd

def th_biserial(rb, qual="cohen"):
    '''
    Rule of thumb for Biserial Correlation
    --------------------------
    
    Simple function to use a rule-of-thumb for the Biserial Correlation.
    
    Parameters
    ----------
    rb : float
        the biserial correlation value
    qual : {"cohen"}, optional 
        indication which set of rule-of-thumb to use. 
    
    Returns
    -------
    pandas.DataFrame
        A dataframe with the following columns:
    
        * *classification*, the qualification of the effect size
        * *reference*, a reference for the rule of thumb used
    
    Notes
    -----
    Cohen's rule of thumb for biserial correlation (1988, p. 82):
    
    |\\|r_b\\|| Interpretation|
    |---|----------|
    |0.00 < 0.125 | negligible |
    |0.125 < 0.304 | small |
    |0.304 < 0.465 | medium |
    |0.465 < 1 | large |

    See Also
    --------
    stikpetP.correlations.cor_biserial.r_biserial : to obtain the biserial correlation coefficient
    
    References
    ----------
    Cohen, J. (1988). *Statistical power analysis for the behavioral sciences* (2nd ed.). L. Erlbaum Associates.

    Author
    ------
    Made by P. Stikker
    
    Companion website: https://PeterStatistics.com  
    YouTube channel: https://www.youtube.com/stikpet  
    Donations: https://www.patreon.com/bePatron?u=19398076

    '''
    
    if (qual=="cohen"):
        ref = "Cohen (1988, p. 82)"
    
        if (abs(rb)<0.125):
            qual = "negligible"
        elif (abs(rb)<0.304):
            qual = "small"
        elif (abs(rb)<0.465):
            qual = "medium"
        else:
            qual = "large"

    results = pd.DataFrame([[qual, ref]], columns=["classification", "reference"])
    
    return(results)

Functions

def th_biserial(rb, qual='cohen')

Rule Of Thumb For Biserial Correlation

Simple function to use a rule-of-thumb for the Biserial Correlation.

Parameters

rb : float
the biserial correlation value
qual : {"cohen"}, optional
indication which set of rule-of-thumb to use.

Returns

pandas.DataFrame

A dataframe with the following columns:

  • classification, the qualification of the effect size
  • reference, a reference for the rule of thumb used

Notes

Cohen's rule of thumb for biserial correlation (1988, p. 82):

|r_b| Interpretation
0.00 < 0.125 negligible
0.125 < 0.304 small
0.304 < 0.465 medium
0.465 < 1 large

See Also

r_biserial()
to obtain the biserial correlation coefficient

References

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). L. Erlbaum Associates.

Author

Made by P. Stikker

Companion website: https://PeterStatistics.com
YouTube channel: https://www.youtube.com/stikpet
Donations: https://www.patreon.com/bePatron?u=19398076

Expand source code
def th_biserial(rb, qual="cohen"):
    '''
    Rule of thumb for Biserial Correlation
    --------------------------
    
    Simple function to use a rule-of-thumb for the Biserial Correlation.
    
    Parameters
    ----------
    rb : float
        the biserial correlation value
    qual : {"cohen"}, optional 
        indication which set of rule-of-thumb to use. 
    
    Returns
    -------
    pandas.DataFrame
        A dataframe with the following columns:
    
        * *classification*, the qualification of the effect size
        * *reference*, a reference for the rule of thumb used
    
    Notes
    -----
    Cohen's rule of thumb for biserial correlation (1988, p. 82):
    
    |\\|r_b\\|| Interpretation|
    |---|----------|
    |0.00 < 0.125 | negligible |
    |0.125 < 0.304 | small |
    |0.304 < 0.465 | medium |
    |0.465 < 1 | large |

    See Also
    --------
    stikpetP.correlations.cor_biserial.r_biserial : to obtain the biserial correlation coefficient
    
    References
    ----------
    Cohen, J. (1988). *Statistical power analysis for the behavioral sciences* (2nd ed.). L. Erlbaum Associates.

    Author
    ------
    Made by P. Stikker
    
    Companion website: https://PeterStatistics.com  
    YouTube channel: https://www.youtube.com/stikpet  
    Donations: https://www.patreon.com/bePatron?u=19398076

    '''
    
    if (qual=="cohen"):
        ref = "Cohen (1988, p. 82)"
    
        if (abs(rb)<0.125):
            qual = "negligible"
        elif (abs(rb)<0.304):
            qual = "small"
        elif (abs(rb)<0.465):
            qual = "medium"
        else:
            qual = "large"

    results = pd.DataFrame([[qual, ref]], columns=["classification", "reference"])
    
    return(results)