Module stikpetP.visualisations.vis_stem_and_leaf_b2b
Expand source code
import pandas as pd
from math import floor, log10
def vi_stem_and_leaf_b2b(catField, scaleField, categories=None, key_factor=None):
'''
Back-to-Back Stem-and-Leaf Plot
-------------------------------
The Cambridge dictionary of statistics defines a back-to-back stem-leaf plot as "a method for comparing two distributions by 'hanging' the two sets of leaves in the stem-and-leaf plots of the two sets of data, off either side of the same stem" (Everitt, 1998, p. 22).
It is a diagram that could be used to show the scores from two independent samples, so when having a binary and a scale variable.
The visualisation is also described at [PeterStatistics.com](https://peterstatistics.com/Terms/Visualisations/stemAndLeafDisplay.html)
Parameters
----------
catField : list or dataframe
the categories
scaleField : list or dataframe
the scores
categories : list or dictionary, optional
the two categories to use from bin_field. If not set the first two found will be used
key_factor : float, optional
the value the stem needs to be multiplied with
Returns
-------
prints the diagram in console.
Alternatives
------------
To display the results of a binary and scale variable, alternative visualisations include: [overlaid histogram](../visualisations/vis_histogram_overlay.html), [back-to-back histogram](../visualisations/vis_histogram_b2b.html), [split histogram](../visualisations/vis_histogram_split.html), [split box-plot](../visualisations/vis_boxplot_split.html), [butterfly chart/pyramid chart](../visualisations/vis_butterfly_bin.html)
Next
----
After visualizing the data, you might want to run a test: [Student t](../tests/test_student_t_is.html), [Welch t](../tests/test_welch_t_is.html), [Trimmed means](../tests/test_trimmed_mean_is.html), [Yuen-Welch](../tests/test_trimmed_mean_is.html), [Z test](../tests/test_z_is.html)
References
----------
Everitt, B. S. (1998). *The Cambridge dictionary of statistics*. Cambridge University Press.
Author
------
Made by P. Stikker
Companion website: https://PeterStatistics.com
YouTube channel: https://www.youtube.com/stikpet
Donations: https://www.patreon.com/bePatron?u=19398076
Examples
--------
>>> import pandas as pd
>>> file1 = "https://peterstatistics.com/Packages/ExampleData/StudentStatistics.csv"
>>> df = pd.read_csv(file1, sep=',', low_memory=False, storage_options={'User-Agent': 'Mozilla/5.0'})
>>> vi_stem_and_leaf_b2b(df['Gen_Gender'], df['Over_Grade'])
'''
#convert to pandas series if needed
if type(catField) is list:
catField = pd.Series(catField)
if type(scaleField) is list:
scaleField = pd.Series(scaleField)
#combine as one dataframe
df = pd.concat([catField, scaleField], axis=1)
df = df.dropna()
#the two categories
if categories is not None:
cat1 = categories[0]
cat2 = categories[1]
else:
cat1 = df.iloc[:,0].value_counts().index[0]
cat2 = df.iloc[:,0].value_counts().index[1]
var_name = df.iloc[:,1].name
#seperate the scores for each category
X = list(df.iloc[:,1][df.iloc[:,0] == cat1])
Y = list(df.iloc[:,1][df.iloc[:,0] == cat2])
A = X + Y
if key_factor is None:
key_factor = 10**floor(log10(abs(max(A))))
stems = sorted(list(set([int(a/key_factor) for a in A])))
X_s = sorted(X)
Y_s = sorted(Y)
leafs = {}
for s in stems:
leafs[s] = [[], []]
for x in X_s:
s = int(x/key_factor)
l = x - s*key_factor
leafs[s][0].append(l)
for y in Y_s:
s = int(y/key_factor)
l = y - s*key_factor
leafs[s][1].append(l)
# Calculate maximum width of any leaf for formatting
max_leaf_value = max(A)
leaf_width = len(str(max_leaf_value % key_factor)) # how wide a leaf can be
leaf_fmt = f"{{:{leaf_width}}}" # e.g., '{:02}' if width is 2
max_stem = max(stems)
stem_width = len(str(max_stem))
stem_fmt = f"{{:{stem_width}}}"
# Align left side (X leafs)
max_x_width = max(
len(' '.join(leaf_fmt.format(l) for l in reversed(leafs[s][0])))
for s in stems
)
X_label = cat1
Y_label = cat2
header_start = max_x_width - len(X_label)
print(' ' * header_start + X_label + ' | s' +' '*(stem_width) + '|' + Y_label)
# Print stem-and-leaf plot
for stem in stems:
x_leafs = ' '.join(leaf_fmt.format(l) for l in reversed(leafs[stem][0]))
y_leafs = ' '.join(leaf_fmt.format(l) for l in leafs[stem][1])
stem_str = stem_fmt.format(stem)
print(f"{x_leafs:>{max_x_width}} | {stem_str} | {y_leafs}")
print('Key: 1 | 8 = ' + str(key_factor+8))
return
Functions
def vi_stem_and_leaf_b2b(catField, scaleField, categories=None, key_factor=None)
-
Back-to-Back Stem-and-Leaf Plot
The Cambridge dictionary of statistics defines a back-to-back stem-leaf plot as "a method for comparing two distributions by 'hanging' the two sets of leaves in the stem-and-leaf plots of the two sets of data, off either side of the same stem" (Everitt, 1998, p. 22).
It is a diagram that could be used to show the scores from two independent samples, so when having a binary and a scale variable.
The visualisation is also described at PeterStatistics.com
Parameters
catField
:list
ordataframe
- the categories
scaleField
:list
ordataframe
- the scores
categories
:list
ordictionary
, optional- the two categories to use from bin_field. If not set the first two found will be used
key_factor
:float
, optional- the value the stem needs to be multiplied with
Returns
prints the diagram in console.
Alternatives
To display the results of a binary and scale variable, alternative visualisations include: overlaid histogram, back-to-back histogram, split histogram, split box-plot, butterfly chart/pyramid chart
Next
After visualizing the data, you might want to run a test: Student t, Welch t, Trimmed means, Yuen-Welch, Z test
References
Everitt, B. S. (1998). The Cambridge dictionary of statistics. Cambridge University Press.
Author
Made by P. Stikker
Companion website: https://PeterStatistics.com
YouTube channel: https://www.youtube.com/stikpet
Donations: https://www.patreon.com/bePatron?u=19398076Examples
>>> import pandas as pd >>> file1 = "https://peterstatistics.com/Packages/ExampleData/StudentStatistics.csv" >>> df = pd.read_csv(file1, sep=',', low_memory=False, storage_options={'User-Agent': 'Mozilla/5.0'}) >>> vi_stem_and_leaf_b2b(df['Gen_Gender'], df['Over_Grade'])
Expand source code
def vi_stem_and_leaf_b2b(catField, scaleField, categories=None, key_factor=None): ''' Back-to-Back Stem-and-Leaf Plot ------------------------------- The Cambridge dictionary of statistics defines a back-to-back stem-leaf plot as "a method for comparing two distributions by 'hanging' the two sets of leaves in the stem-and-leaf plots of the two sets of data, off either side of the same stem" (Everitt, 1998, p. 22). It is a diagram that could be used to show the scores from two independent samples, so when having a binary and a scale variable. The visualisation is also described at [PeterStatistics.com](https://peterstatistics.com/Terms/Visualisations/stemAndLeafDisplay.html) Parameters ---------- catField : list or dataframe the categories scaleField : list or dataframe the scores categories : list or dictionary, optional the two categories to use from bin_field. If not set the first two found will be used key_factor : float, optional the value the stem needs to be multiplied with Returns ------- prints the diagram in console. Alternatives ------------ To display the results of a binary and scale variable, alternative visualisations include: [overlaid histogram](../visualisations/vis_histogram_overlay.html), [back-to-back histogram](../visualisations/vis_histogram_b2b.html), [split histogram](../visualisations/vis_histogram_split.html), [split box-plot](../visualisations/vis_boxplot_split.html), [butterfly chart/pyramid chart](../visualisations/vis_butterfly_bin.html) Next ---- After visualizing the data, you might want to run a test: [Student t](../tests/test_student_t_is.html), [Welch t](../tests/test_welch_t_is.html), [Trimmed means](../tests/test_trimmed_mean_is.html), [Yuen-Welch](../tests/test_trimmed_mean_is.html), [Z test](../tests/test_z_is.html) References ---------- Everitt, B. S. (1998). *The Cambridge dictionary of statistics*. Cambridge University Press. Author ------ Made by P. Stikker Companion website: https://PeterStatistics.com YouTube channel: https://www.youtube.com/stikpet Donations: https://www.patreon.com/bePatron?u=19398076 Examples -------- >>> import pandas as pd >>> file1 = "https://peterstatistics.com/Packages/ExampleData/StudentStatistics.csv" >>> df = pd.read_csv(file1, sep=',', low_memory=False, storage_options={'User-Agent': 'Mozilla/5.0'}) >>> vi_stem_and_leaf_b2b(df['Gen_Gender'], df['Over_Grade']) ''' #convert to pandas series if needed if type(catField) is list: catField = pd.Series(catField) if type(scaleField) is list: scaleField = pd.Series(scaleField) #combine as one dataframe df = pd.concat([catField, scaleField], axis=1) df = df.dropna() #the two categories if categories is not None: cat1 = categories[0] cat2 = categories[1] else: cat1 = df.iloc[:,0].value_counts().index[0] cat2 = df.iloc[:,0].value_counts().index[1] var_name = df.iloc[:,1].name #seperate the scores for each category X = list(df.iloc[:,1][df.iloc[:,0] == cat1]) Y = list(df.iloc[:,1][df.iloc[:,0] == cat2]) A = X + Y if key_factor is None: key_factor = 10**floor(log10(abs(max(A)))) stems = sorted(list(set([int(a/key_factor) for a in A]))) X_s = sorted(X) Y_s = sorted(Y) leafs = {} for s in stems: leafs[s] = [[], []] for x in X_s: s = int(x/key_factor) l = x - s*key_factor leafs[s][0].append(l) for y in Y_s: s = int(y/key_factor) l = y - s*key_factor leafs[s][1].append(l) # Calculate maximum width of any leaf for formatting max_leaf_value = max(A) leaf_width = len(str(max_leaf_value % key_factor)) # how wide a leaf can be leaf_fmt = f"{{:{leaf_width}}}" # e.g., '{:02}' if width is 2 max_stem = max(stems) stem_width = len(str(max_stem)) stem_fmt = f"{{:{stem_width}}}" # Align left side (X leafs) max_x_width = max( len(' '.join(leaf_fmt.format(l) for l in reversed(leafs[s][0]))) for s in stems ) X_label = cat1 Y_label = cat2 header_start = max_x_width - len(X_label) print(' ' * header_start + X_label + ' | s' +' '*(stem_width) + '|' + Y_label) # Print stem-and-leaf plot for stem in stems: x_leafs = ' '.join(leaf_fmt.format(l) for l in reversed(leafs[stem][0])) y_leafs = ' '.join(leaf_fmt.format(l) for l in leafs[stem][1]) stem_str = stem_fmt.format(stem) print(f"{x_leafs:>{max_x_width}} | {stem_str} | {y_leafs}") print('Key: 1 | 8 = ' + str(key_factor+8)) return