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di_kendall_tau Kendall Tau Distribution

Description

Kendall Tau Distribution

Usage

di_kendall_tau(n, tau, method = c("kendall", "AS71"))

Arguments

n the sample size (number of pairs)

tau Kendall tau value

method algorithm to use
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Details

If method="AS71" Algorithm AS 71 (Best & Gipps, 1974) will be used, by running the helper
function he_AS71(S, n). The test statistic is:

S =

(
n

2

)
× |τ | = n× (n− 1)

2
× |τ |

AS 71 returns upper values only, so they get doubled for a two-sided test.

If method="kendall" the algorithm found at https://github.com/scipy/scipy/blob/v1.10.1/scipy/stats/_mstats_basic.py#L774-
L898 was adapted. This refers to Kendall (1970), and uses the helper function he_kendall(n, C).
Where C = nc, i.e. the number of concordant pairs. This algorithm already returns a two-tailed
result.

Value

pValue the two-tailed significance (p-value)

Author(s)

P. Stikker

Please visit: https://PeterStatistics.com

YouTube channel: https://www.youtube.com/stikpet

References

Best, D. J., & Gipps, P. G. (1974). Algorithm AS 71: The upper tail probabilities of Kendall’s tau.
Applied Statistics, 23(1), 98–100. https://doi.org/10.2307/2347062

di_mcdf Multinomial Cumulative Distribution Function

Description

This is a function for the cumulative multinomial probability. It returns the probability of a distri-
bution as given in F for a sample size of sum of F, where the probability for each category is given
as in P, or a distribution even more rare. It is a generalization of the binomial distribution.

The distribution is also described at PeterStatistics.com

Usage

di_mcdf(F, P, method = "loggamma")

Arguments

F list with the observed counts

P list with the probabilities for each category

method optional the calculation method to use. Either "loggamma" (default), "factorial",
"gamma", "mprob".

https://peterstatistics.com/Terms/Distributions/Multinomial.html
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Details

The function first determines all possible arrangements over k categories that sum to n, using the
find_combinations() function. It then uses the di_pmf() function to determine the probability for
each of these, and sums those that are less or equal to the sample version.

This distribution is used in a Multinomial Goodness-of-Fit Test. The stikpetR library has a function
ts_multinomial_gof for this, but it uses the dmultinomial function from R.

Value

A float with the requested probability

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

Examples

freq = c(3, 6, 2, 9)
prob = c(0.2, 0.3, 0.1, 0.4)
di_mcdf(freq, prob)

di_mpmf Multinomial Probability Mass Function

Description

This is a function for the multinomial probability. It returns the probability of a distribution as given
in F for a sample size of sum of F, where the probability for each category is given as in P. It is a
generalization of the binomial distribution.

The distribution is also described at PeterStatistics.com

Usage

di_mpmf(F, P, method = "loggamma")

Arguments

F list with the observed counts

P list with the probabilities for each category

method optional the calculation method to use. Either "loggamma" (default), "factorial",
"gamma", "mprob".

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
https://peterstatistics.com/Terms/Distributions/Multinomial.html
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Details

If method=factorial the following formula is used:

mpmf (F, P ) =
n!∏k

i=1 (Fi!)
×

k∏
i=1

PFi
i

This formula was most likely already used by for example Edgeworth (1905), but can for example
also be found in Berry and Mielke (1995, p. 769)

If method=gamma:

mpmf (F, P ) =
Γ (1 + n)∏n

i=1 Γ (1 + Fi)
×

k∏
i=1

PFi
i

If method=loggamma:
mpmf (F, P ) = eln(mpmf(F,P ))

ln (mpmf (F, P )) = ln (Γ (n+ 1)) +

k∑
i=1

Fi × ln (Pi)− ln (Γ (Fi + 1))

This formula can for example be found in Arnold (2018).

If method=mprob the algorithm from García-Pérez (1999) is used:

1. Determine F ∗, the counts in descending order, and move the elements in P accordingly cre-
ating P ∗.

2. Set pmf = 1, t = P ∗
1 , i = 2, x = 0, and m = F ∗

1

3. Set l = F ∗
i . For r = 1 to l do:

• update x = x+ 1

• if x > F ∗
1 then set t = 1 (else nothing)

• update pmf = pmf × t× P ∗
i × r+m

r

4. If i = k, then go to step 5, otherwise update i = i+ 1, m = m+ F ∗
i and go to step 3

5. If x < F ∗
1 then for r = x+ 1 to F ∗

1 update pmf = pmf × P ∗
1

This distribution is used in a Multinomial Goodness-of-Fit Test. The stikpetR library has a function
ts_multinomial_gof for this, but it uses the dmultinomial function from R.

Value

A float with the requested probability

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Arnold, J. (2018, December 3). Maximum Likelihood for the multinomial distribution (bag of
words) [Blog]. Jakuba. https://blog.jakuba.net/maximum-likelihood-for-multinomial-distribution/

Berry, K. J., & Mielke, P. W. (1995). Exact cumulative probabilities for the multinomial distribution.
Educational and Psychological Measurement, 55(5), 769–772. doi:10.1177/0013164495055005008

Edgeworth, F. Y. (1905). The law of error. Transactions of the Cambridge Philosophical Society,
20, 36–66.

García-Pérez, M. A. (1999). MPROB: Computation of multinomial probabilities. Behavior Re-
search Methods, Instruments, & Computers, 31(4), 701–705. doi:10.3758/BF03200749

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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Examples

freq = c(3, 6, 2, 9)
prob = c(0.2, 0.3, 0.1, 0.4)
di_mpmf(freq, prob)

di_mwwcdf Mann-Whitney-Wilcoxon Cumulative Distribution Function

Description

This function returns the cumulative probability for the specified U statistic, given n1 and n2 cases
in each category.

It first uses the di_mwwd function to determine the distribution up to the specified u value, sums
these results and divides it by the total number of possible arrangements.

The pwilcox() function from R’s stats library does the same, and is probably more optimized than
this function.

Usage

di_mwwcdf(u, n1, n2)

Arguments

u int, the U test statistic

n1 int, the sample size of the first category

n2 int the sample size of the second category

Details

See the details in di_mwwd() on how the frequency distribution is determined. The sum of these is
then divided by the total number of possibilities, which is the number of ways we can choose $n_1$
items out of $n$, without replacement. This is the binomial coefficient, or number of combinations:

C(n, n1) = nCr(n, n1) =

(
n

n1

)
=

n!

n1!× (n− n1)!

To convert a W statistic to a U statistic use:

U = W − n1 × (n1 + 1)

2

Value

p : the cumulative probability

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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di_mwwd Mann-Whitney-Wilcoxon Distribution

Description

This distribution is also referred to as a permutation distribution.

It is used in the Mann-Whitney U and Wilcoxon Rank Sum test.

In this version the U-statistic is used as input, and the sample sizes of each of the two categories.
This function will return the counts (frequency) of each possible U value from 0 till the provided u
value. If all possible values need to be shown, simply set u = i*j.

Usage

di_mwwd(u, n1, n2)

Arguments

u int, the U test statistic

n1 int, the sample size of the first category

n2 int the sample size of the second category

Details

A recursive formula is used:

fn1,n2
(U) =


0 if U < 0 or U > n1 × n2

1 if (n1 = 1 or n2 = 1) and 0 ≤ U ≤ n1 × n2

fn1,n2−1(U) + fn1−1,n2
(U − n2) else

This formula is found in Mann and Whitney (1947, p. 51), Dinneen and Blakesley 1973, p. 269)
and described also in Festinger (1946).

To convert a W statistic to a U statistic use:

U = W − n1 × (n1 + 1)

2

Value

result : a list with the counts starting with the count for U=0

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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References

Dinneen, L. C., & Blakesley, B. C. (1973). Algorithm AS 62: A generator for the sampling distri-
bution of the Mann- Whitney U statistic. Journal of the Royal Statistical Society. Series C (Applied
Statistics), 22(2), 269–273. doi:10.2307/2346934
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di_mwwf Mann-Whitney-Wilcoxon Count

Description

This function will return the number of possible ways to obtain a specified U value given n1 and n2
cases in each category.

Usage

di_mwwf(u, n1, n2, memo = list())

Arguments

u int, the U test statistic

n1 int, the sample size of the first category

n2 int the sample size of the second category

memo optional list, memoize the result

Details

A recursive formula is used:

fn1,n2
(U) =


0 if U < 0 or U > n1 × n2

1 if (n1 = 1 or n2 = 1) and 0 ≤ U ≤ n1 × n2

fn1,n2−1(U) + fn1−1,n2(U − n2) else

This formula is found in Mann and Whitney (1947, p. 51), Dinneen and Blakesley 1973, p. 269)
and described also in Festinger (1946).

To convert a W statistic to a U statistic use:

U = W − n1 × (n1 + 1)

2

Value

result : a list with the counts starting with the count for U=0

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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References

Dinneen, L. C., & Blakesley, B. C. (1973). Algorithm AS 62: A generator for the sampling distri-
bution of the Mann- Whitney U statistic. Journal of the Royal Statistical Society. Series C (Applied
Statistics), 22(2), 269–273. doi:10.2307/2346934

Festinger, L. (1946). The significance of difference between means without reference to the fre-
quency distribution function. Psychometrika, 11(2), 97–105. doi:10.1007/BF02288926
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di_mwwpmf Mann-Whitney-Wilcoxon Probability Mass Function

Description

This function returns the probability for the specified U statistic, given n1 and n2 cases in each
category.

It first uses the di_mwwf function to determine the count for the u value, and divides it by the total
number of possible arrangements.

The dwilcox() function from R’s stats library does the same, and is probably more optimized than
this function.

Usage

di_mwwpmf(u, n1, n2)

Arguments

u int, the U test statistic
n1 int, the sample size of the first category
n2 int the sample size of the second category

Details

See the details in di_mwwf() on how the frequency is determined. This is then divided by the
total number of possibilities, which is the number of ways we can choose $n_1$ items out of $n$,
without replacement. This is the binomial coefficient, or number of combinations:

C(n, n1) = nCr(n, n1) =

(
n

n1

)
=

n!

n1!× (n− n1)!

To convert a W statistic to a U statistic use:

U = W − n1 × (n1 + 1)

2

Value

result : a list with the counts starting with the count for U=0

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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di_scdf Spearman Rho Distribution

Description

The Spearman Rank Correlation Coefficient Distribution. Will return a two-tailed p-value

This function makes use of the pspearman library for exact computations.

Usage

di_scdf(
n,
rs,
method = c("t", "z-fieller", "z-olds", "iman-conover", "AS89", "exact"),
iters = 500

)

Arguments

n the number of scores (should be equal in both variables)

rs the Spearman rank correlation coefficient

method the test to be used

iters the number of iterations to use, only applicable if Iman-Conover is used

Details

The exact distribution is calculated using the following steps:

1. Determine all possible permutations of the scores in the first variable

2. Determine for each permutation the Spearman rho with the second variable

3. Count how often the Spearman rho is above the Spearman rho between the original two vari-
ables

4. Divide the results by n!

This procedure can be used by using the he_spearman_exact(ord1, ord2) function.

This function however, makes use of the pspearman function from the pspearman library. It seems
this uses van de Wiel and Bucchianico (2001) method for the exact distribution, which can handle
larger sample sizes (up to n = 22).

The Student t distribution approximation uses (Kendall & Stuart, 1979, p. 503; Iman & Conover,
1978):

ts = rs ×

√
n− 2

1− r2s

df = n− 2

sig = 2× (1− T (|ts| , df))

Iman and Conover refer to Pitman (1937) for the test.
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The Fieller’s standard normal distribution approximation uses (Fieller et al., 1957, p. 472; Choi,
1977, p. 646):

zF =

√
n− 3

1.06
× atanh (rs)

sig = 2× (1− Φ (|zF |))

The Old’s standard normal distribution approximation uses (Olds, 1938, p. 142; Olds, 1949, p.
117):

zO =
x

ASE

sig = 2× (1− Φ (|zO|))

With:

x =
S

2
− n3 − n

12

ASE =
√
n− 1× n2 + n

12

S =

(
n3 − n

)
× (1− rs)

6

A combination of the Student t and Normal approximation by Iman and Conover (1978, p. 272)
uses:

J =
rs
2

×
(√

n− 1 +
√
n− 21− r2s

)
And reject the null hypothesis if:

J > Jcrit

With:

Jcrit =
Q
(
Φ
(
1− α

2

))
+Q

(
T
(
1− α

2 , df
))

2

df = n− 2

The function will use a binary search to find alpha such that J = Jcrit.

One of the more popular methods is Algorithm AS 89 (Best & Roberts, 1975). This is available as
a separate helper function he_AS89(n, S).

Often in publications the test statistic S is mentioned, this can be defined as:

S =

n∑
i=1

d2i =

n∑
i=1

(rxi
− ryi

)
2

Which if there are no ties is equal to:

S =

(
n3 − n

)
× (1− rs)

6

Value

A dataframe with:

statistic the statistic from the test (only if applicable)

df the degrees of freedom (only if applicable)

pValue the significance (p-value)
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P. Stikker
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YouTube channel: https://www.youtube.com/stikpet

References

Best, D. J., & Roberts, D. E. (1975). Algorithm AS 89: The upper tail probabilities of Spearman’s
rho. Applied Statistics, 24(3), 377–379. https://doi.org/10.2307/2347111

Choi, S. C. (1977). Tests of equality of dependent correlation coefficients. Biometrika, 64(3),
645–647. https://doi.org/10.1093/biomet/64.3.645

Fieller, E. C., Hartley, H. O., & Pearson, E. S. (1957). Tests for rank correlation coefficients. I.
Biometrika, 44(3–4), 470–481. https://doi.org/10.1093/biomet/44.3-4.470

Iman, R. L., & Conover, W. J. (1978). Approximations of the critical region for spearman’s rho
with and without ties present. Communications in Statistics - Simulation and Computation, 7(3),
269–282. https://doi.org/10.1080/03610917808812076

Kendall, M., & Stuart, A. (1979). The advanced theory of statistics. Volume 2: Inference and
relationship (4th ed.). Griffin.

Olds, E. G. (1938). Distributions of sums of squares of rank differences for small numbers of indi-
viduals. The Annals of Mathematical Statistics, 9(2), 133–148. https://doi.org/10.1214/aoms/1177732332

Olds, E. G. (1949). The 5% significance levels for sums of squares of rank differences and a correc-
tion. The Annals of Mathematical Statistics, 20(1), 117–118. https://doi.org/10.1214/aoms/1177730099

Pitman, E. J. G. (1937). Significance tests which may be applied to samples from any populations.
II. The correlation coefficient test. Supplement to the Journal of the Royal Statistical Society, 4(2),
225–232. https://doi.org/10.2307/2983647

van de Wiel, M. A., & Bucchianico, A. D. (2001). Fast computation of the exact null distribution
of Spearman’s rho and Page’s L statistic for samples with and without ties. Journal of Statistical
Planning and Inference, 92(1–2), 133–145. https://doi.org/10.1016/S0378-3758(00)00166-X

Examples

n = 12
rs = 0.8
di_scdf(n, rs)
di_scdf(n, rs, method="exact")
di_scdf(n, rs, method="t")
di_scdf(n, rs, method="z-fieller")
di_scdf(n, rs, method="z-olds")
di_scdf(n, rs, method="iman-conover")
di_scdf(n, rs, method="AS89")
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di_wcdf Wilcoxon Cumulative Distribution Function

Description

This function will give the cumulative probability of a sum of ranks of T, given a sample size of n.

Some explanation on this distribution can be found in this YouTube video. This function is shown
in this YouTube video and the test is also described at PeterStatistics.com

Usage

di_wcdf(T, n, method = "shift")

Arguments

T int with the sum of ranks
n int with the sample size
method optional the calculation method to use. Either "shift" (default), "enumerate",

"recursive".

Details

The enumeration method will create all possible combinations of ranks 1 to n, sum each of these,
and then determines the count of each unique sum of ranks. It then uses this to determine the
probability and cumulative probabilities.

The recursive method uses the formula from McCornack (1965, p. 864):

srf (x, y) =


0 x < 0

0 x >
(
y+1
2

)
1 y = 1 ∧ (x = 0 ∨ x = 1)

srf∗ (x, y) y ≥ 0

with:
srf∗ (x, y) = srf (x− y, y − 1) + srf (x, y − 1)

The shift-algorithm from Streitberg and Röhmel (1987), and can also be found in Munzel and
Brunner (2002). This works as follows.

• Start with listing all values from 0 to the maximum possible sum of ranks, so 0 to (n×(n+1))/2
• Create a vector with the value 1 followed by n times a 0.
• Create a shifted vector by moving all values by 1.
• Add the two results (the original and the shifted version)
• This will be the updated vector
• Shift the vector now by 2
• Add the two results (the updated vector with and the two shifted version)
• Repeat these steps each time shifting by one more than the previous. Stop when n-times

shifting has been done.

This Wilcoxon Signed Rank Test (One-Sample) uses this distribution. The ts_wilcoxon_os func-
tion performs this test, but uses R’s own psignrank

https://youtu.be/BKWnTJAp58E
https://youtu.be/hSnP6fyAiiw
https://peterstatistics.com/Terms/Distributions/WilcoxonSignRank.html
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Value

A float with the requested probability

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

McCornack, R. L. (1965). Extended tables of the Wilcoxon matched pair signed rank statistic.
Journal of the American Statistical Association, 60(311), 864–871. doi:10.2307/2283253

Munzel, U., & Brunner, E. (2002). An exact paired rank test. Biometrical Journal, 44(5), 584.
doi:10.1002/1521-4036(200207)44:5<584::AID-BIMJ584>3.0.CO;2-9

Streitberg, B., & Röhmel, J. (1987). Exakte Verteilungen für Rang-und Randomisierungstests im
allgemeinen c-Stichprobenproblem. EDV in Medizin und Biologie, 18(1), 12–19.

Examples

di_wcdf(T=8, n=12)

di_wpmf Wilcoxon Probability Mass Function

Description

This function will give the probability of a sum of ranks of T, given a sample size of n.

Some explanation on this distribution can be found in this YouTube video. This function is shown
in this YouTube video and the test is also described at PeterStatistics.com

Usage

di_wpmf(T, n, method = "shift")

Arguments

T int with the sum of ranks

n int with the sample size

method optional the calculation method to use. Either "shift" (default), "enumerate",
"recursive".

Details

The enumeration method will create all possible combinations of ranks 1 to n, sum each of these,
and then determines the count of each unique sum of ranks. It then uses this to determine the
probability.

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
https://youtu.be/BKWnTJAp58E
https://youtu.be/hSnP6fyAiiw
https://peterstatistics.com/Terms/Distributions/WilcoxonSignRank.html
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The recursive method uses the formula from McCornack (1965, p. 864):

srf (x, y) =


0 x < 0

0 x >
(
y+1
2

)
1 y = 1 ∧ (x = 0 ∨ x = 1)

srf∗ (x, y) y ≥ 0

with:

srf∗ (x, y) = srf (x− y, y − 1) + srf (x, y − 1)

The shift-algorithm from Streitberg and Röhmel (1987), and can also be found in Munzel and
Brunner (2002). This works as follows.

• Start with listing all values from 0 to the maximum possible sum of ranks, so 0 to (n×(n+1))/2

• Create a vector with the value 1 followed by n times a 0.

• Create a shifted vector by moving all values by 1.

• Add the two results (the original and the shifted version)

• This will be the updated vector

• Shift the vector now by 2

• Add the two results (the updated vector with and the two shifted version)

• Repeat these steps each time shifting by one more than the previous. Stop when n-times
shifting has been done.

Value

A float with the requested probability

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

@examples di_wpmf(T=8, n=12)

References

McCornack, R. L. (1965). Extended tables of the Wilcoxon matched pair signed rank statistic.
Journal of the American Statistical Association, 60(311), 864–871. doi:10.2307/2283253

Munzel, U., & Brunner, E. (2002). An exact paired rank test. Biometrical Journal, 44(5), 584.
doi:10.1002/1521-4036(200207)44:5<584::AID-BIMJ584>3.0.CO;2-9

Streitberg, B., & Röhmel, J. (1987). Exakte Verteilungen für Rang-und Randomisierungstests im
allgemeinen c-Stichprobenproblem. EDV in Medizin und Biologie, 18(1), 12–19.

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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es_alt_ratio Alternative Ratio

Description

The Alternative Ratio is an effect size measure that could be accompanying a one-sample bino-
mial, score or Wald test.It is simply the sample proportion (percentage), divided by the expected
population proportion (often set at 0.5)

The Alternative Ratio is only mentioned in the documentation of a program called PASS from NCSS
(n.d.), and referred to as Relative Risk by JonB (2015).

This function is shown in this YouTube video and the effect size is also described at PeterStatis-
tics.com

Usage

es_alt_ratio(data, p0 = 0.5, p0Cat = NULL, codes = NULL)

Arguments

data vector with the data

p0 Optional hypothesized proportion for the first category (default is 0.5)

p0Cat Optional the category for which p0 was used

codes Optional vector with the two codes to use

Details

To decide on which category is associated with p0 the following is used:

• If codes are provided, the first code is assumed to be the category for the p0.

• If p0Cat is specified that will be used for p0 and all other categories will be considered as
category 2, this means if there are more than two categories the remaining two or more (besides
p0Cat) will be merged as one large category.

• If neither codes or p0Cat is specified and more than two categories are in the data a warning
is printed and no results.

• If neither codes or p0Cat is specified and there are two categories, p0 is assumed to be for the
category closest matching the p0 value (i.e. if p0 is above 0.5 the category with the highest
count is assumed to be used for p0)

The formula used is:
AR =

p

π

Symbols used:

• p is the sample proportion of one of the categories

• π the expected proportion

https://youtu.be/IwZph3C9xFc
https://peterstatistics.com/Terms/EffectSizes/AlternativeRatio.html
https://peterstatistics.com/Terms/EffectSizes/AlternativeRatio.html
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Value

Dataframe with:

AR1 the alternative category for one category

AR2 the alternative category for the other category

comment the category for which p0 was

Before, After and Alternatives

Before this effect size you might first want to perform a test: ts_binomial_os, for One-Sample
Binomial Test ts_score_os, for One-Sample Score Test ts_wald_os, for One-Sample Wald Test

Unfortunately I’m not aware of any rule-of-thumb for this measure.

Alternatives for this effect size could be: es_cohen_g, for Cohen g es_cohen_h_os, for Cohen h’
r_rosenthal, for Rosenthal Correlation if a z-value is available

Author(s)

P. Stikker. Companion Website, YouTube Channel

References

JonB. (2015, October 14). Effect size of a binomial test and its relation to other measures of effect
size. StackExchange - Cross Validated. https://stats.stackexchange.com/q/176856

NCSS. (n.d.). Tests for one proportion. In PASS Sample Size Software (pp. 100-1-100–132). Re-
trieved November 10, 2018, from https://www.ncss.com/wp-content/themes/ncss/pdf/Procedures/PASS/Tests_for_One_Proportion.pdf

Examples

# Example 1: Numeric list
ex1 = c(1, 1, 2, 1, 2, 1, 2, 1)
es_alt_ratio(ex1)
es_alt_ratio(ex1, p0=0.3)

# Example 2: Text list
ex2 = c("Female", "Male", "Male", "Female", "Male", "Male")
es_alt_ratio(ex2)
es_alt_ratio(ex2, p0Cat='Female')
es_alt_ratio(ex2, codes=c('Male', 'Female'))

# Example 3: dataframe
file1 <- "https://peterstatistics.com/Packages/ExampleData/GSS2012a.csv"
df1 <- read.csv(file1, sep=",", na.strings=c("", "NA"))
es_alt_ratio(df1['sex'])
es_alt_ratio(df1['mar1'], codes=c("DIVORCED", "NEVER MARRIED"))

https://PeterStatistics.com
https://www.youtube.com/stikpet
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es_bag_s Bennett-Alpert-Goldstein S

Description

An effect size meaure, that measures the how strongly two raters or variables, agree with each other.

It takes the proportions of cases that both agree, and adjusts for the number of categories. Scott’s pi
(see es_scott_pi()) does this as well, and improves on this measure.

Usage

es_bag_s(field1, field2, categories = NULL)

Arguments

field1 vector, the first categorical field

field2 vector, the first categorical field

categories vector, optional, order and/or selection for categories of field1 and field2

Details

The formula used (Bennett et al., 1954, p. 307):

S =
k

k − 1
×
(
p0 −

1

k

)
With:

P =

r∑
i=1

Fi,i

p0 =
P

n

Symbols used

• Fi,j , the observed count in row i and column j.

• r, is the number of rows (categories in the first variable)

• n, is the total number of scores

Value

S, the Bennett-Alpert-Goldstein value

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Bennett, E. M., Alpert, R., & Goldstein, A. C. (1954). Communications through limited response
questioning. Public Opinion Quarterly, 18(3), 303. doi:10.1086/266520

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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es_bin_bin Effect Sizes for Binary vs. Binary

Description

Various measures of association/agreement/similarity for binary vs. binary cases.

Usage

es_bin_bin(
field1,
field2,
categories1 = NULL,
categories2 = NULL,
method = "odds-ratio"

)

Arguments

field1 : dataframe field with categories for the rows

field2 : dataframe field with categories for the columns

categories1 : optional list with selection and/or order for categories of field1

categories2 : optional list with selection and/or order for categories of field2

method : the method to use. Default is odds-ratio

Details

The method can be set to any of the following:

alroy ample anderberg austin-colwell
baroni-urbani-buser-1 baroni-urbani-buser-2 becker-clogg-1 becker-clogg-2
bonett-price-1 bonett-price-2 bonett-price-3 braun-blanquet
camp-1 camp-2 camp-3 chen-popovich
clement cohen-kappa cohen-w cole-c1
cole-c2 cole-c3 cole-c4 cole-c5
cole-c6 cole-c7 cole-c8 contingency
czekanowski dennis dice-1 dice-2
dice-3 digby doolittle driver-kroeber-1
driver-kroeber-2 edward eyraud fager-mcgowan-1
fager-mcgowan-2 faith fleiss forbes-1
forbes-2 fossum-kaskey gilbert gilbert-wells
gk-lambda-1 gk-lambda-2 gleason gower
gower-legendre hamann harris-lahey hawkins-dotson
hurlbert jaccard johnson kent-foster-1
kent-foster-2 kuder-richardson kulczynski-1 kulczynski-2
loevinger matching maxwell-pilliner mcconnaughey
mcewen-michael mountford nei-li ochiai-1
ochiai-2 odds-ratio otsuka pearson
pearson-heron pearson-q1 pearson-q2 pearson-q3
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pearson-q4 pearson-q5 peirce-1 peirce-2
peirce-3 phi rogers-tanimoto rogot-goldberg
russell-rao scott simpson sokal-michener
sokal-sneath-1 sokal-sneath-2 sokal-sneath-3 sokal-sneath-4
sokal-sneath-5 sorgenfrei stiles tanimoto
tarantula tarwid tulloss yule-q
yule-r yule-y

If we have a 2x2 table with the following values:

Column 1 Column 2 total
row 1 a b R1

row 2 c d R2

total C1 C2 n

then the following formula are used:

Nr Label Formula
1 Russell-Rao a

n
2 Dice-1 a

R1

3 Dice-2 a
C1

4 Braun-Blanquet a
max(R1,C1)

5 Simpson Similarity a
min(R1,C1)

6 Kulczynski-1 a
b+c

7 Jaccard a
a+b+c

8 Sokal-Sneath-1 a
a+2b+2c

9 Gleasson 2a
2a+b+c

10 Mountford 2a
a(b+c)+2bc

11 Driver-Kroeber a√
R1C1

12 Sorgenfrei a2

R1C1

13 Johnson a
R1

+ a
C1

14 Kulczynski-2 1
2

(
a
R1

+ a
C1

)
15 Fager-McGowan-1 a√

R1C1
− 1

2
√

max(R1,C1)

16 Fager-McGowan-2 a√
R1C1

−
√

max(R1,C1)

2

17 tarantula aR2

cR1

18 Ample
∣∣∣aR2

cR1

∣∣∣
19 Gilbert an−R1C1

C1n+R1n−an−R1C1

20 Fossum-Kaskey
n(a− 1

2 )
2

R1C1

21 Forbes - 1 na
R1C1

22 Eyraud a−R1C1

R1R2C1C2

23 Sokal-Michener a+d
n

24 Faith a+ 1
2

n

25 Sokal-Sneath-5 a+d
b+c

26 Rogers-Tanimoto a+d
a+2(b+c)+d

27 Sokal-Sneath-2 2a+2d
2a+b+c+2d
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28 Gower a+d√
R1R2C1C2

29 Sokal-Sneath-4 ad√
R1R2C1C2

30 Rogot-Goldberg a
R1+C1

+ d
R2+C2

31 Sokal-Sneath-3 1
4

(
a
R1

+ a
C1

+ d
R2

+ d
C2

)
32 Hawkin-Dotson 1

2

(
a

a+b+c +
d

b+c+d

)
33 Clement aR2

nR1
+ dR1

nR2

34 Harris-Lahey a(R2+C2)
2n(a+b+c) +

d(R1+C1)
2n(b+c+d)

35 Austin-Colwell 2
π arcsin

√
a+d
n

36 Baroni-Urbani-Buser-1
√
ad+a√

ad+a+b+c

37 Peirce-1 ad−bc
R1R2

38 Peirce-2 ad−bc
C1C2

39 Cole C1 ad−bc
R1C1

40 Loevinger ad−bc
min(R1C2,R2C1)

41 Cole C7


ad−bc
R1C2

if ad ≥ bc
ad−bc
R1C1

if ad < bc and a ≤ d
ad−bc
R2C2

if ad < bc and a > d

42 Dennis ad−bc√
nR1C1

43 Phi ad−bc√
R1R2C1C2

44 Doolittle (ad−bc)2

R1R2C1C2

45 Peirce-3 ad−bc
ab+2bc+cd

46 Cohen-kappa 2(ad−bc)
R1C2+R2C1

47 McEwen-Michael 4(ad−bc)

(a+d)2+(b+c)2

48 Kuder-Richardson 4(ad−bc)
R1R2+C1C2+2ad−2bc

49 Scott 4ad−(b+c)2

(R1+C1)(R2+C2)

50 Maxwell-Pilliner 2(ad−bc)
R1R2+C1C2

51 Cole C5
√
2(ad−bc)√

(ad−bc)2+R1R2C1C2

52 Hamann (a+d)−(b+c)
n

53 Fleiss (ad−bc)(R1C2+R2C1)
2R1R2C1C2

54 Yule Q ad−bc
ad+bc

55 Yule Y
√
ad−

√
bc√

ad+
√
bc

56 Digby H (ad)3/4−(bc)3/4

(ad)3/4+(bc)3/4

57 Edward Q ORπ/4−1
ORπ/4+1

58 Tarwid na−R1C1

na+R1C1

59 Bonett-Price-1 ŵx−1
ŵx+1

60 Contingency coefficient
√

χ2

n+χ2

61 Cohen w
√

χ2

χ2

62 Pearson
√

ϕ2

n+ϕ2

63 Hurlbert ad−bc
|ad−bc|

√
χ2−χ2

min

χ2
max−χ2

min

64 Stiles log10

(
n(|ad−bc|−n

2 )
2

R1R2C1C2

)
65 McConnaughey a2−bc

R1C1
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66 Baroni-Urbani-Buser-2 a−b−c+
√
ad

a+b+c+
√
ad

67 Kent-Foster-1 −bc
bR1+cC1+bc

68 Kent-Foster-2 −bc
bR2+cC2+bc

69 Tulloss
√
U × S ×R

70 Gilbert-Wells ln (a)− ln (n)− ln
(
R1

n

)
− ln

(
C1

n

)
71 Yule r cos

(
π
√
bc√

ad+
√
bc

)
72 Anderberg σ−σ′

2n

73 Alroy F
a(n′+

√
n′)

a(n′+
√
n′)+ 3

2 bc

74 Pearson Q1 sin
(

π
2 × R2C1

R1C2

)
75 Goodman-Kruskal Lambda-1 σ−σ′

2n−σ′

76 Goodman-Kruskal Lambda-2 2min(a,d)−b−c
2min(a,d)+b+c

77 Odds Ratio ad
bc

78 Pearson Q4 sin π
2 × 1

1+ 2bcn
(ad−bc)(b+c)

79 Pearson Q5 sin π
2 × 1√

1+ 4abcdn2

(ad−bc)2(a+d)(b+c)

80 Camp (3 ver.) m√
1+Θ×m2

81 Becker-Clogg-1 g−1
g+1

82 Becker-Clogg-2 OR13.3/δ−1
OR13.3/δ+1

83 Bonett-Price-r cos
(

π
1+ωc

)
84 Bonett-Price-rhat cos

(
π

1+ω̂ĉ

)
85 Chen-Popovich ad−bc

λxλyn2

Equation 57

OR =
ad

bc

Equation 59

x =
1

2
−
(
1

2
− pmin

)2

pmin =
min (R1, R2, C1, C2)

n

ω̂ =
(a+ 0.1)× (d+ 0.1)

(b+ 0.1)× (c+ 0.1)

Equations 60, 61, and 63

χ2 =
n (ad− bc)

2

R1R2C1C2

Equation 62

Φ =
|ad− bc|√
R1R2C1C2



26 es_bin_bin

Note that Choi et. al ommit the absolute value, but this would create problems with taking the
square root if bc>ad.

Equation 63:

χ2
max =


nR1C2

R2C1
if ad ≥ bc

nR1C1

R2C2
if ad < bc and a ≤ d

nR2C2

R1C1
if ad < bc and a > d

χ2
min =

n3 (â− g (â))
2

R1R2C1C2

â =
R1C1

n

g (â) =

{
⌊â⌋ if ad < bc

⌈â⌉ if ad ≥ bc

Equation 69

U = log2

(
1 +

min (b, c) + a

max (b, c) + a

)
S =

1√
log2

(
2 + min(b,c)

a+1

)
R = log2

(
1 +

a

R1

)
log2

(
1 +

a

RC1

)
Equation 71 and 75

σ = max (a, b) + max (c, d) + max (a, c) + max (b, d)

σ′ = max (R1, R2) + max (C1, C2)

Equation 73

n′ = a+ b+ c

Equation 80
Camp (1934, pp. 309) describes the following steps for the calculation: Step 1: If total of column 1
(C1) is less than column 2 (C2), swop the two columns

Step 2: Calculate p = C1
n , p1 = a

n , and p2 = c
C2

Step 3: Determine z1, z2 as the normal deviate corresponding to the area p1, p2 resp. (inverse
standard normal cumulative distribution)

Step 4: Determine y the normal ordinate corresponding to p (the height of the normal distribution)

Step 5: Calculate m = p×(1−p)×(z1+z2)
y

Step 6: Find phi in a table of phi values

Camp suggested for a very basic approximation to simply use ϕ = 1.

For a better approximation Camp made the following table:
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p 0.5 0.6 0.7 0.8 0.9
phi 0.637 0.63 0.62 0.60 0.56

Cureton (1968, p. 241) expanded on this table and produced:

p 0 1 2 3 4 5 6 7 8 9 10
0.5 0.637 0.636 0.636 0.635 0.635 0.634 0.634 0.633 0.633 0.632 0.631
0.6 0.631 0.631 0.630 0.629 0.628 0.627 0.626 0.625 0.624 0.622 0.621
0.7 0.621 0.620 0.618 0.616 0.614 0.612 0.610 0.608 0.606 0.603 0.600
0.8 0.600 0.597 0.594 0.591 0.587 0.583 0.579 0.574 0.569 0.564 0.559

Step 7: Calculate rt =
m√

1+ϕ×m2

Cureton (1968) describes quite a few shortcomings with this approximation, and circumstances
when it might be appropriate.

Equation 81 and 82
Version 81 will calculate:

ρ∗ =
g − 1

g + 1

Version 82 will calculate:

ρ∗∗ =
OR13.3/∆ − 1

OR13.3/∆ + 1

With:
g = e12.4×ϕ−24.6×ϕ3

ϕ =
ln (OR)

∆

OR =

(
a
c

)(
b
d

) =
a× d

b× c

∆ = (µR1 − µR2)× (vC1 − vC2)

µR1 =
−e−

t2r
2

pR1
, µR2 =

e−
t2r
2

pR2

vC1 =
−e−

t2c
2

pC1
, vC2 =

e−
t2c
2

pC2

tr = Φ−1 (pR1) , tc = Φ−1 (pC1)

px =
x

n

Equations 83 and 84
Formula for version 1 is (Bonett & Price, 2005, p. 216):

ρ∗ = cos

(
π

1 + ωc

)
With:

ω = OR =
a× d

b× c
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c =
1− |R1−C1|

5×n −
(
1
2 − pmin

)2
2

pmin =
MIN (R1, R2, C1, C2)

n

Formula for version 2 is (Bonett & Price, 2005, p. 216):

ρ̂∗ = cos

(
π

1 + ω̂ĉ

)
with:

ω̂ =

(
a+ 1

2

)
×
(
d+ 1

2

)(
b+ 1

2

)
×
(
c+ 1

2

)
ĉ =

1− |R1−C1|
5×(n+2) −

(
1
2 − p̂min

)2
2

p̂min =
MIN (R1, R2, C1, C2) + 1

n+ 2

Equation 85

λx = Φ−1

(
R1

n

)
λy = Φ−1

(
C1

n

)
with Φ−1 (. . . ) being the inverse standard normal cumulative distribution

Sources for formulas
The formulas were obtained from the following sources. The columns W-C-H show which equation
corresponds to my label in:

• W: Warrens (2008, pp. 219–222). Equation 4 from Warrens is the chi-square value and not
added.

• C: Choi et al. (2010, pp. 44–45). Equations not added from this source are: Eq. 4 is a ‘3w
Jaccard’, could not find a source for this and not added. Equation 12 is just the intersection
(a), eq. 13 the innerproduct (a+d), and 66 the dispersion. Equation 51 is the chi-square value
and measures 15 to 30 and 62 are just distance measures.

• H: Hubálek (Hubálek, 1982, pp. 671–673)

If no page number is listed in the original source, the formula was taken from Warrens, Choi et al.
and/or Hubálek.

nr Label Original W C H
1 Russell-Rao (Russell & Rao, 1940) 15 14 14
2 Dice-1 (Dice, 1945, p. 302) 17a
3 Dice-2 (Dice, 1945, p. 302) 17b
4 Braun-Blanquet (Braun-Blanquet, 1932) 12 46 1
5 Simpson Similarity (Simpson, 1943, p. 20, 1960, p. 301) 16 45 2
6 Kulczynski-1 (Kulczynski, 1927) 11b 64 3
7 Jaccard = (Jaccard, 1901, 1912, p. 39) 6 1 4

Tanimoto (Tanimoto, 1958, p. 5) 65
8 Sokal-Sneath-1 (Sokal & Sneath, 1963, p. 129) 30a 6 6
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9 Gleasson = (Gleason, 1920, p. 31) 9 5
Dice-3 = (Dice, 1945, p. 302) 2
Nei-Li = (Nei & Li, 1979, p. 5270) 5
Czekanowski 3

10 Mountford (Mountford, 1962, p. 45) 28 37 15
11 Driver-Kroeber = (Driver & Kroeber, 1932, p. 219) 13 31 11

Ochiai-1 = (Ochiai, 1957) 33
Otsuka (Otsuka, 1936) 38

12 Sorgenfrei (Sorgenfrei, 1958) 23 36 12
13 Johnson (Johnson, 1967) 33 43 9
14 Driver-Kroeber-2 = (Driver & Kroeber, 1932, p. 219) 11a 42 8

Kulczynski-2 (Kulczynski, 1927) 41 7
15 Fager-McGowan-1 (Fager & McGowan, 1963, p. 454) 29
16 Fager-McGowan-2 (Fager & McGowan, 1963, p. 454) 47 13
17 tarantula (Jones & Harrold, 2005) 75
18 ample 76
19 Gilbert (Gilbert, 1884, p. 171)
20 Fossum-Kaskey (Fossum & Kaskey, 1966, p. 65) 35
21 Forbes - 1 (Forbes, 1907, p. 279) 5 34 40
22 Eyraud (Eyraud, 1936) 74 17
23 Sokal-Michener (Sokal & Michener, 1958, p. 1417) 22 7 20
24 Faith (Faith, 1983, p. 290) 10
25 Sokal-Sneath-5 (Sokal & Sneath, 1963, p. 129) 30e 56 19
26 Rogers-Tanimoto (Rogers & Tanimoto, 1960) 25 9 23
27 Sokal-Sneath-2 = (Sokal & Sneath, 1963, p. 129) 30b 8 22

Gower-Legendre (Gower & Legendre, 1986) 11
28 Gower (Gower, 1971) 50
29 Sokal-Sneath-4 = (Sokal & Sneath, 1963, p. 130) 30d 57 25

Ochiai-2 (Ochiai, 1957) 60
30 Rogot-Goldberg (Rogot & Goldberg, 1966, p. 997) 32
31 Sokal-Sneath-3 (Sokal & Sneath, 1963, p. 130) 30c 49 18
32 Hawkin-Dotson (Hawkins & Dotson, 1975, pp. 372–373) 34
33 Clement (Clement, 1976, p. 258) 37
34 Harris-Lahey (Harris & Lahey, 1978, p. 526) 40
35 Austin-Colwell (Austin & Colwell, 1977, p. 205) 21
36 Baroni-Urbani-Buser-1 (Baroni-Urbani & Buser, 1976, p. 258) 38a 71 32
37 Peirce-1 (Peirce, 1884, p. 453) 1a
38 Peirce-2 (Peirce, 1884, p. 453) 1b 26
39 Cole C1 (Cole, 1949, p. 415)
40 Loevinger = (Loevinger, 1947, p. 30) 18

Forbes 2 (Forbes, 1925) 48 42
41 Cole C7 (Cole, 1949, p. 420) 19 34
42 Dennis (Dennis, 1965, p. 69) 44
43 Pearson Phi = (Pearson, 1900a, p. 12) 7 54 30

Yule Phi = (Yule, 1912, p. 596)
Cole C2 (Cole, 1949, p. 415)

44 Doolittle (Doolittle, 1885, p. 123) 2 31
45 Peirce-3 (Peirce, 1884) 73 16
46 Cohen-kappa (Cohen, 1960, p. 40) 24
47 McEwen-Michael = (Michael, 1920, p. 57) 10 68 39

Cole C3 (Cole, 1949, p. 415)
48 Kuder-Richardson (Kuder & Richardson, 1937) 14
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49 Scott (Scott, 1955, p. 324) 21
50 Maxwell-Pilliner (Maxwell & Pilliner, 1968) 35
51 Cole C5 (Cole, 1949, p. 416) 58 29
52 Hamann (Hamann, 1961) 27 67 24
53 Fleiss (Fleiss, 1975, p. 656) 36
54 Yule Q = (Yule, 1900, p. 272) 3 61 36

Cole C4 = (Cole, 1949, p. 415)
Pearson Q2 (Pearson, 1900, p. 15)

55 Yule Y (Yule, 1912, p. 592) 8 63 37
56 Digby H (Digby, 1983, p. 754) 41
57 Edward Q (Edwards, 1957; Becker & Clogg, 1988, p. 409)
58 Tarwid (Tarwid, 1960, p. 117) 40 43
59 Bonett-Price-1 (Bonett & Price, 2007, p. 433)
60 Contingency (Pearson, 1904, p. 9) 52 28
61 Cohen w (Cohen, 1988, p. 216)
62 Pearson (Pearson, 1904) 53
63 Hurlbert / Cole C8 (Hurlbert, 1969, p. 1) 35
64 Stiles (Stiles, 1961, p. 272) 26 59
65 McConnaughey (McConnaughey, 1964) 31 39 10
66 Baroni-Urbani-Buser-2 (Baroni-Urbani & Buser, 1976, p. 258) 38b 72 33
67 Kent-Foster-1 (Kent & Foster, 1977, p. 311) 39a
68 Kent-Foster-2 (Kent & Foster, 1977, p. 311) 39b
69 Tulloss (Tulloss, 1997, p. 133)
70 Gilbert-Wells (Gilbert & Wells, 1966)
71 Yule r (Yule, 1900, p. 276)

Pearson-Q3 (Pearson, 1900a, p. 16)
Cole C6 (Cole, 1949, p. 416)
Pearson-Heron (Pearson & Heron, 1913) 55 38

72 Anderberg (Anderberg, 1973) 70
73 Alroy F (Alroy, 2015, eq. 6)
74 Pearson Q1 (Pearson, 1900a, p. 15)
75 Goodman-Kruskal Lambda-1 (Goodman & Kruskal, 1954, p. 743) 69
76 Goodman-Kruskal Lambda-2 (Goodman & Kruskal, 1954) 20
77 Odds Ratio (Fisher, 1935, p. 50)
78 Pearson Q4 (Pearson, 1900, p. 16)
79 Pearson Q5 (Pearson, 1900, p. 16)
80 Camp (Camp, 1934, p. 309)
81 Becker-Clogg-1 (Becker & Clogg, 1988, pp. 410–412)
82 Becker-Clogg-2 (Becker & Clogg, 1988, pp. 410–412)
83 Bonett-Price-2 (Bonett & Price, 2005, p. 216)
84 Bonett-Price-3 (Bonett & Price, 2005, p. 216)
85 Ched-Popovich (Chen & Popovich, 2002, p. 37)

Value

the effect size measure value

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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es_cohen_d Cohen d (for one-way ANOVA)

Description

An effect size measure for a one-way ANOVA. It simply compares the largest possible difference
between two categories means and divides this over the total variance.

Note that most often Cohen d is reported with pairwise tests, but that is actually Cohen d_z. That
version is available using es_cohen_d_ps().

Usage

es_cohen_d(nomField, scaleField, categories = NULL)
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Arguments

nomField the groups variable

scaleField the numeric scores variable

categories vector, optional. the categories to use from catField

Details

The formula used is (Cohen, 1988, p. 276):

d =
x̄max − x̄min

σ

With:

σ =

√
SSw

n

SSw =

k∑
j=1

nj∑
i=1

(xi,j − x̄j)
2

x̄j =

∑nj

i=1 xi,j

nj

Symbols

• xi,j the i-th score in category j

• nj the number of scores in category j

• k the number of categories

• x̄j the mean of the scores in category j

• SSw the within sum of squares (sum of squared deviation of the mean)

Value

the Cohen d value

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). L. Erlbaum
Associates.
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es_cohen_d_os Cohen d’ (for one-sample)

Description

This function will calculate Cohen d’ (one-sample). An effect size measure that can be used with a
test for a single mean (for example a one-sample Student t-test).

Usage

es_cohen_d_os(data, mu = NULL)

Arguments

data pandas series with the numeric scores

mu optional parameter to set the hypothesized mean. If not used the midrange is
used

Details

The test is also described at PeterStatistics.com

The formula used (Cohen, 1988, p. 46):

d′ =
x̄− µH0

s

With:

s =

√∑n
i=1 (xi − x̄)

2

n− 1

x̄ =

∑n
i=1 xi

n

Symbols used:

• x̄ the sample mean

• µH0
the hypothesized mean in the population

• n the sample size (i.e. the number of scores)

• s the unbiased sample standard deviation

• xi the i-th score

Note to use a rule-of-thumb from Cohen d, first convert this to a regular Cohen d using es_convert(d’,
from="cohendos", to="cohend"), then use th_cohen_d(d)

Or convert it further to an Odds Ratio using, es_convert(d, from="cohend", to="or", ex1="chinn")
or es_convert(d, from="cohend", to="or", ex1="borenstein"). Then use th_odds_ratio(or)

Value

Cohen d’. mu is also printed if not provided.

https://peterstatistics.com/Terms/EffectSizes/CohenD.html
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Before, After and Alternatives

Before this you might want to perform a test: ts_student_t_os, for One-Sample Student t-Test.
ts_trimmed_mean_os, for One-Sample Trimmed (Yuen or Yuen-Welch) Mean Test. ts_z_os, for
One-Sample Z-Test.

After this you might want a rule-of-thumb for the effect size, first convert to regular Cohen d:
es_convert, to convert Cohen’s d one-sample to Cohen d, use fr = "cohendos" and to = "cohend".
th_cohen_d, for rules-of-thumb for Cohen d.

Alternative Effect Sizes: es_hedges_g_os, for Hedges g. es_common_language_os, for the Com-
mon Language Effect Size.

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). L. Erlbaum
Associates.

Examples

#Example 1: Numeric dataframe
file2 = 'https://peterstatistics.com/Packages/ExampleData/StudentStatistics.csv'
df2 = read.csv(file2, sep=';', na.strings=c("", "NA"))
ex1 = df2['Gen_Age']
es_cohen_d_os(ex1)

#Example 2: Numeric list
ex2 = c(1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5)
es_cohen_d_os(ex2)

es_cohen_d_ps Cohen d_z (for Paired Samples)

Description

An effect size measure for paired samples.

Usage

es_cohen_d_ps(field1, field2, within = TRUE)

Arguments

field1 the scores on the first variable

field2 the scores on the second variable

within boolean to use a correction for correlated pairs

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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Details

the formula used (Cohen, 1988, p. 48):

dz =
d̄

sd

With:

sd =

√∑n
i=1

(
di − d̄

)2
n− 1

di = xi,1 − xi,2

d̄ =

∑n
i=1 di
n

Symbols used:

• n the number of pairs (sample size)

• xi,1 the i-th score of the first variable

• xi,2 the i-th score of the second variable

If within=TRUE the formula is changed to (Borenstein et al., 2009, p. 29):

dz =
d̄

sw

With:
sw =

sd√
2× (1− rp)

rp =

∑n
i=1 (xi,1 − x̄1)× (xi,2 − x̄2)

(n− 1)× s1 × s2

s2i =

∑n
j=1 (xi,j − x̄i)

2

ni − 1

x̄i =

∑n
j=1 xi,j

ni

Alternatives

library(lsr)

cohensD(var1, var2, method="paired")

library(effsize)

datF = na.omit(data.frame(var1, var2))

cohen.d(datF$var1, datF$var2, paired=TRUE)

cohen.d(datF$var1, datF$var2, paired=TRUE, within=FALSE)

Value

the Cohen d effect size

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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es_cohen_f Cohen f

Description

An effect size measure for regression analysis or an ANOVA test. It gives roughly the proportion of
variance explained by the categorical variable.

The Cohen f is often used with ANOVA, while Cohen f-squared with regression.

Usage

es_cohen_f(nomField, scaleField, categories = NULL, useRanks = FALSE)

Arguments

nomField the groups variable

scaleField the numeric scores variable

categories vector, optional. the categories to use from catField

useRanks boolean, optional. Use of ranks or original scores. Default is FALSE

Details

The formula used (Cohen, 1988, p. 284):

f =

√
η2

1− η2

Where η2 is the value of eta-squared.

It can also be calculated using (Cohen, 1988, p. 371):

f =
σµ

σ

With:

σµ =

√
SSb

n

σ =

√
SSw

n

Where SSi is the sum of squared differences, see the Fisher one-way ANOVA for details on how to
calculate these.

The f2 can be found in Cohen (1988, p. 410).
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Conversions

Cohen f can be converted to eta-squared using: es_convert(f, from="cohenf", to="etasq")

Alternatives

library(effectsize)

anova_stats(aov(scores~groups))

cohens_f(aov(scores~groups))

Value

the Cohen f value

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). L. Erlbaum
Associates.

es_cohen_g Cohen’s g

Description

Cohen’s g (Cohen, 1988) is an effect size measure that could be accompanying a one-sample bino-
mial (see Rosnow & Rosenthal, 2003), score or Wald test. It is simply the difference of the sample
proportion with 0.5.

A video explanation of Cohen g can be found here on YouTube

This function is shown in this YouTube video and the effect size is also described at PeterStatis-
tics.com

Usage

es_cohen_g(data, p0Cat = NULL, codes = NULL)

Arguments

data vector with the data

p0Cat Optional the category for which p0=0.5 was used

codes Optional vector with the two codes to use

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
https://youtu.be/tPZMvB8QrM0
https://youtu.be/3DEmngmws2U
https://peterstatistics.com/Terms/EffectSizes/CohenG.html
https://peterstatistics.com/Terms/EffectSizes/CohenG.html
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Details

To decide on which category is associated with p0 the following is used:

• If codes are provided, the first code is assumed to be the category for the p0.

• If p0Cat is specified that will be used for p0 and all other categories will be considered as
category 2, this means if there are more than two categories the remaining two or more (besides
p0Cat) will be merged as one large category.

• If neither codes or p0Cat is specified and more than two categories are in the data a warning
is printed and no results.

• If neither codes or p0Cat is specified and there are two categories, p0 is assumed to be for the
category closest matching the p0 value (i.e. if p0 is above 0.5 the category with the highest
count is assumed to be used for p0)

The formula used is (Cohen, 1988, p. 147):

g = p− 0.5

Symbols used:

• p is the sample proportion

Value

Dataframe with:

g for cat 1 Cohen g for category 1

g for cat 2 Cohen g for category 2

Before, After and Alternatives

Before this effect size you might first want to perform a test: ts_binomial_os, for One-Sample
Binomial Test ts_score_os, for One-Sample Score Test ts_wald_os, for One-Sample Wald Test

After this, you might want a rule-of-thumb: th_cohen_g, for rules-of-thumb for Cohen g

Alternatives for this effect size could be: es_cohen_h_os, for Cohen h’ es_alt_ratio, for Alter-
native Ratio r_rosenthal, for Rosenthal Correlation if a z-value is available

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). L. Erlbaum
Associates.

Examples

#Example 1: Numeric list
ex1 = c(1, 1, 2, 1, 2, 1, 2, 1)
es_cohen_g(ex1)

#Example 2: dataframe
dataFile = "https://peterstatistics.com/Packages/ExampleData/GSS2012a.csv"

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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df1 <- read.csv(dataFile, sep=",", na.strings=c("", "NA"))
es_cohen_g(df1['sex'])
#Using two specific categories:
es_cohen_g(df1['mar1'], codes=c("DIVORCED", "NEVER MARRIED"))

es_cohen_h Cohen h

Description

Cohen h

Usage

es_cohen_h(p1, p2)

Arguments

p1 the first proportion
p2 the second proportion

Details

Formula used (Cohen, 1988, p. 181):
h = ϕ1 − ϕ2

With:
ϕi = 2× arcsin

√
pi

Symbols used:

• pi the proportion of cases in category i

For classification rule-of-thumb use: th_cohen_h()

Value

Cohen h

Author(s)

P. Stikker

Please visit: https://PeterStatistics.com

YouTube channel: https://www.youtube.com/stikpet

References

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). L. Erlbaum
Associates.

Examples

es_cohen_h(0.2, 0.4)
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es_cohen_h_os Cohen’s h’

Description

An adaptation of Cohen h (es_cohen_h) for a one-sample case. It is an effect size measure that
could be accompanying a one-sample binomial, score or Wald test.

A YouTube video on Cohen h’.

This function is shown in this YouTube video and the effect size is also described at PeterStatis-
tics.com

Usage

es_cohen_h_os(data, p0 = 0.5, p0Cat = NULL, codes = NULL)

Arguments

data a vector with the data

p0 Optional hypothesized proportion for the first category (default is 0.5)

p0Cat Optional the category for which p0 was used

codes Optional vector with the two codes to use

Details

To decide on which category is associated with p0 the following is used:

• If codes are provided, the first code is assumed to be the category for the p0.

• If p0Cat is specified that will be used for p0 and all other categories will be considered as
category 2, this means if there are more than two categories the remaining two or more (besides
p0Cat) will be merged as one large category.

• If neither codes or p0Cat is specified and more than two categories are in the data a warning
is printed and no results.

• If neither codes or p0Cat is specified and there are two categories, p0 is assumed to be for the
category closest matching the p0 value (i.e. if p0 is above 0.5 the category with the highest
count is assumed to be used for p0)

Formula used (Cohen, 1988, p. 202):

h′ = ϕ1 − ϕh0

With:
ϕi = 2× arcsin

√
pi

pi =
Fi

n

n =

k∑
i=1

Fi

Symbols used:

https://youtu.be/ddWe94VKX_8
https://youtu.be/sGfFB7Zzeas
https://peterstatistics.com/Terms/EffectSizes/CohenH.html
https://peterstatistics.com/Terms/EffectSizes/CohenH.html
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• Fi is the (absolute) frequency (count) of category i

• n is the sample size, i.e. the sum of all frequencies

• pi the proportion of cases in category i

• ph0
the expected proportion (i.e. the proportion according to the null hypothesis)

Value

Dataframe with:

Cohen h’ the Cohen h’ value

comment the category for which p0 was

Before, After and Alternatives

Before this effect size you might first want to perform a test: ts_binomial_os, for One-Sample
Binomial Test ts_score_os, for One-Sample Score Test ts_wald_os, for One-Sample Wald Test

After this, you might want a rule-of-thumb or first convert this to a ’regular’ Cohen h: es_convert,
to convert Cohen h’ to Cohen h, use fr="cohenhos" and to=cohenh th_cohen_h, for rules-of-thumb
for Cohen h

Alternatives for this effect size could be: es_cohen_g, for Cohen g es_alt_ratio, for Alternative
Ratio r_rosenthal, for Rosenthal Correlation if a z-value is available

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). L. Erlbaum
Associates.

Examples

#Example 1: Numeric list
ex1 = c(1, 1, 2, 1, 2, 1, 2, 1)
es_cohen_h_os(ex1)
es_cohen_h_os(ex1, p0=0.3)

#Example 2: dataframe
dataFile = "https://peterstatistics.com/Packages/ExampleData/GSS2012a.csv"
df1 <- read.csv(dataFile, sep=",", na.strings=c("", "NA"))
es_cohen_h_os(df1['sex'])

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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es_cohen_kappa Cohen Kappa

Description

Cohen Kappa

Usage

es_cohen_kappa(nom1, nom2, ase = "exact")

Arguments

nom1 the scores on the first variable

nom2 the scores on the second variable

ase c("exact", "approximate") optional to indicate which method to use to calculate
asymptotic standard errors

Details

The formula used is (Cohen, 1960, p. 40):

κ =
p0 − pc
1− pc

With:
p0 =

P

n

pc =
Q

n2

P =

r∑
i=1

Fi,i

Q =

r∑
i=1

Ri × Ci

Ri =

c∑
j=1

Fi,j

Cj =

r∑
i=1

Fi,j

Symbols used

• r is the number of rows (categories in the first variable)

• c is the number of columns (categories in the second variable)

• n is the total number of scores

• Fi,j is the frequency (count) of scores equal to the i-th category in the first variable, and the
j-th category in the second.
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The approximate asymptotic standard errors (ase="approximate") use (Cohen, 1960, pp. 43-44):

ASE0 ≈
√

pc
n× (1− pc)

ASE1 ≈

√
p0 × (1− p0)

n× (1− pc)
2

The exact asymptotic standard errors (ase="exact") use (Fleiss et al., 1969, p. 325):

ASE0 =

√
SS0

n× (1− pc)
2

ASE1 =

√
SS1

n× (1− pc)
4

With:

SS0 =

(
r∑

i=1

pi,. × p.,i × (1− (p.,i + pi,.))
2

)
−p2c+(1− p0)

2×
r∑

i=1

c∑
j=1

j ̸=i

pi,.×p.,j×(p.,i + pj,.)
2

SS1 =

(
r∑

i=1

pi,i × ((1− pc)− (p.,i + pi,.)× (1− p0))
2

)
−(p0 × pc − 2× pc + p0)

2
+(1− p0)

2×
r∑

i=1

c∑
j=1

j ̸=i

pi,j×(p.,i + pj,.)
2

pi,j =
Fi,j

n

pi,. =
Ri

n

p.,j =
Cj

n

The test is then performed using (Cohen, 1960, p. 44):

zκ =
κ

ASE0

sig. = 2× (1− Φ (|zκ|))

Where Φ (. . . ) is the cumulative density function of the standard normal distribution

Value

dataframe with the effect size value, the asymptotic standard errors (assuming null and alternative),
test statistic, degrees of freedom, and p-value (sig.)

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological
Measurement, 20(1), 37–46. https://doi.org/10.1177/001316446002000104

Fleiss, J. L., Cohen, J., & Everitt, B. S. (1969). Large sample standard errors of kappa and weighted
kappa. Psychological Bulletin, 72(5), 323–327. https://doi.org/10.1037/h0028106

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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es_cohen_u Cohen U

Description

Cohen (1988, p. 23) provided three measures that relate to Cohen’s d.

• U1, is the proportion of non-overlap between distributions

• U2, is the proportion of overlap between distributions

• U3, is the proportion of one group’s scores below the mean of another group

U1 and U2 are probably the least used of these three.

By converting each back to Cohen’s d, the rule-of-thumb from Cohen d could be used as classi-
fication. A nice interactive visualisation of the relation between Cohen $U_3$ and the Common
Language Effect size, can be found at https://rpsychologist.com/therapist-effects/.

Usage

es_cohen_u(d, version = "u3")

Arguments

d the Cohen d value

version "u3", "u2", "u1", Optional, the version of Cohen U to determine

Details

The following formulas are used (Cohen, 1988, p. 23):

U3 = Φ(d)

U2 = Φ

(
d

2

)
U1 = Φ

(
2× U2 − 1

U2

)
Symbols used:

• d, Cohen’s d value

• ni the number of scores in category i

• Φ (. . . ) the cumulative density function of the standard normal distribution

Value

The Cohen U value

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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References

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). L. Erlbaum
Associates.

See Also

es_convert, to convert an U to Cohen d use fr="cohenu.", to="cohend".

es_cohen_w Cohen’s w

Description

An effect size measure that could be used with a chi-square test. It has no upper limit, but can be
compared to Cohen’s rules-of-thumb.

This function is shown in this YouTubevideo and the measure is also described at PeterStatis-
tics.com

Usage

es_cohen_w(chi2, n)

Arguments

chi2 the chi-square test statistic

n the sample size

Details

The formula used is (Cohen, 1988, p. 216):

w =

√
χ2
GoF

n

Symbols used:

• χ2
GoF the Pearson chi-square goodness-of-fit value

• n the sample size, i.e. the sum of all frequencies

Value

value of Cohen’s w

YouTube video
https://peterstatistics.com/Terms/EffectSizes/CohenW.html
https://peterstatistics.com/Terms/EffectSizes/CohenW.html


es_common_language_is 49

Before, After and Alternatives

Before this you will need a chi-square value. From either: ts_freeman_tukey_gof, for Freeman-
Tukey Test of Goodness-of-Fit. ts_freeman_tukey_read, for Freeman-Tukey-Read Test of Goodness-
of-Fit. ts_g_gof, for G (Likelihood Ratio) Goodness-of-Fit Test. ts_mod_log_likelihood_gof,
for Mod-Log Likelihood Test of Goodness-of-Fit. ts_neyman_gof, for Neyman Test of Goodness-
of-Fit. ts_pearson_gof, for Pearson Test of Goodness-of-Fit. ts_powerdivergence_gof, for
Power Divergence GoF Test. ph_pairwise_gof for Pairwise Goodness-of-Fit Tests. ph_residual_gof_gof
for Residuals Using Goodness-of-Fit Tests

After this you might want to use some rule-of-thumb for the interpretation: th_cohen_w for various
rules-of-thumb for Cohen w.

Alternative effect sizes that use a chi-square value: es_cramer_v_gof, for Cramer’s V for Goodness-
of-Fit. es_fei, for Fei. es_jbm_e, for Johnston-Berry-Mielke E.

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). L. Erlbaum
Associates.

Examples

chi2Value <- 3.106
n <- 19
es_cohen_w(chi2Value, n)

es_common_language_is Common Language (CL/CLES) (Independent Samples)

Description

The Common Language Effect Size (a.k.a. Probability of Superiority) is the probability of taking a
random pair from two categories, the first is greater than the first, i.e.

P (X > Y )

Note however that Wolfe and Hogg (1971) actually had this in reverse, i.e.

P (X ≤ Y )

Some will also argue to count ties equally to each of the two categories (Grissom, 1994, p. 282),
which makes the definition:

P (X > Y ) +
P (X = Y )

2

It was further developed by Vargha and Delaney (2000) especially in light of a Mann-Whitney U
test.

For scale data, an approximation using the standard normal distribution is also available.

The term Common Language Effect Size can be found in McGraw and Wong (1992), the term
Probability of Superiority is found in Grissom (1994), and the term Stochastic Superiority in Vargha
and Delaney (2000)

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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Usage

es_common_language_is(
catField,
scores,
categories = NULL,
levels = NULL,
dmu = 0,
method = "brute"

)

Arguments

catField A vector with the categorical data

scores A vector with the scores

categories Optional to indicate which two categories of catField to use, otherwise first two
found will be used.

levels Optional list with the ordinal text values in order

dmu Optional difference according to null hypothesis (default is 0)

method Optional optional method to use. "brute" will use a brute force " that will
split ties evenly, "brute-it" is the same as brute but ignores ties, "vda" will use
the calculation from Vargha-Delany, and "appr" a normal approximation from
McGraw-Wong

Details

For "brute" simply all possible pairs are determined and half of the ties are added, i.e. (Grissom,
1994, p. 282):

P (X > Y ) +
P (X = Y )

2

With "brute-it" the ties are ignored (it = ignore ties):

P (X > Y )

The "appr" uses the approximation from McGraw and Wong (1992, p. 361):

CL = Φ(z)

With:

z =
|x̄1 − x̄2|√
s21 + s22

s2i =

∑ni

j=1 (xi,j − x̄i)
2

ni − 1

x̄i =

∑ni

j=1 xi,j

ni

Symbols used:

• xi,j the j-th score in category i

• ni the number of scores in category i

• Φ (. . . ) the cumulative density function of the standard normal distribution
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The "vda" uses the formula used from Vargha and Delaney (2000, p. 107):

A =
1

nj
×
(
Ri

ni
− ni + 1

2

)
with Ri the sum of the ranks in category i

It could also be calculated from the Mann-Whitney U value:

A =
U

n1 × n2

Note that the difference between the two options (using category 1 or category 2) will be the devia-
tion from 0.5. If all scores in the first category are lower than the scores in the second, A will be 0
using the first category, and 1 for the second.

If the number of scores in the first category higher than the second, is the same as the other way
around, A (no matter which category used) will be 0.5.

The CLE can be converted to a Rank Biserial (= Cliff delta) using the es_convert() function.
This can then be converted to a Cohen d, and then the rules-of-thumb for Cohen d could be used
(th_cohen_d())

The CLE for the other category is simply 1 - CLE, except for the case where ties are ignored
("brute-it").

Value

A dataframe with:

CLE cat. 1 the effect size for the first category

CLE cat. 2 the effect size for the second category

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Grissom, R. J. (1994). Statistical analysis of ordinal categorical status after therapies. Journal of
Consulting and Clinical Psychology, 62(2), 281–284. doi:10.1037/0022-006X.62.2.281

McGraw, K. O., & Wong, S. P. (1992). A common language effect size statistic. Psychological
Bulletin, 111(2), 361–365. doi:10.1037/0033-2909.111.2.361

Vargha, A., & Delaney, H. D. (2000). A critique and improvement of the CL common language
effect size statistics of McGraw and Wong. Journal of Educational and Behavioral Statistics, 25(2),
101–132. doi:10.3102/10769986025002101

Wolfe, D. A., & Hogg, R. V. (1971). On constructing statistics and reporting data. The American
Statistician, 25(4), 27–30. doi:10.1080/00031305.1971.10477278

See Also

th_cle, to find rules-of-thumb for the CLE

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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es_common_language_os Common Language Effect Size (One-Sample)

Description

The Common Language Effect Size is most often used for independent samples or paired samples,
but some have adapted the concept for one-sample as well.

It is the probability of taking a random score and the probability it is higher than the selected value:
$$P(X > \mu_H_0)$$

Some will also argue to count ties equally, which makes the definition: $$P(X > \mu_H_0) +
\fracP(X = \mu_H_0)2$$

This version is implemented in MatLab (see https://nl.mathworks.com/matlabcentral/fileexchange/113020-
cles) based on a Python version from Tulimieri (2021)

For scale data, an approximation using the standard normal distribution is also available using Co-
hen’s d, alternatively a conversion via the rank-biserial coefficient can be done. These two are used
in R’s effectsize library from Ben-Shachar et al. (2020).

The measure is also described at PeterStatistics.com

Usage

es_common_language_os(scores, levels = NULL, mu = NULL, version = "brute")

Arguments

scores list with scores as numbers, or if text also provide levels

levels optional vector with levels in order

mu optional hypothesized statistic, otherwise the midrange will be used

version optional "brute", "brute-it", "rb", "normal" method to use. see details

Details

For "brute" simply counts all scores above the test statistic and half of the ones that are equal (Tulim-
ieri, 2021): $$CL = P(X > \mu_H_0) + \fracP(X = \mu_H_0)2$$ With: $$P\left(x \gt \mu\right) =
\frac\sum_i=1^n \begincases 1, & \textif x_i \gt \mu \\ 0, & \textotherwise\endcasesn$$ $$P\left(x =
\mu\right) = \frac\sum_i=1^n \begincases 1, & \textif x_i = \mu \\ 0, & \textotherwise\endcasesn$$

This seems to also produce the same result as what Mangiafico (2016, pp. 223–224) calls a VDA-
like measure, where VDA is short for Vargha-Delaney A.

With "brute-it" the ties are ignored (it = ignore ties): $$CL = P(X > \mu_H_0)$$

The "normal", uses Cohen’s d and a normal approximation (Ben-Shachar et al., 2020): $$CL =
\Phi\left(\fracd’\sqrt2\right)$$ Where \(d’\) is Cohen’s d for one-sample, and \(\Phi\left(\dots\right)\)
the cumulative density function of the normal distribution This is like a one-sample version of the
McGraw and Wong (1992, p. 361) version with the independent samples.

The "rb", uses the rank-biserial correlation coefficient (Ben-Shachar et al., 2020): $$CL = \frac1+r_b2$$
The CLE can be converted to a Rank Biserial (= Cliff delta) using the es_convert() function.
This can then be converted to a Cohen d, and then the rules-of-thumb for Cohen d could be used
(th_cohen_d())

https://peterstatistics.com/Terms/EffectSizes/CommonLanguageEffectSize.html
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Value

CLES : float, the Common Language Effect Size

Before, After and Alternatives

Before this measure you might want to perform the test: ts_sign_os, for One-Sample Sign Test.
ts_trinomial_os, for One-Sample Trinomial Test. ts_wilcoxon_os, for One-Sample Wilcoxon
Signed Rank Test. ts_student_t_os, for One-Sample Student t-Test. ts_trimmed_mean_os, for
One-Sample Trimmed (Yuen or Yuen-Welch) Mean Test. ts_z_os, for One-Sample Z-Test.

After this you might want a rule-of-thumb directly or by converting this to either rank biserial or
Cohen d: th_cle, for CLES rule-of-thumb (incl. conversion options)

Alternative effect size measure with ordinal data: es_dominance, for the Dominance score. r_rank_biserial_os,
for the Rank-Biserial Correlation r_rosenthal, for the Rank-Biserial Correlation

Alternative effect size measure with interval or ratio data: es_cohen_d_os, for for Cohen d’.
es_hedges_g_os, for Hedges g.

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Ben-Shachar, M., Lüdecke, D., & Makowski, D. (2020). effectsize: Estimation of Effect Size In-
dices and Standardized Parameters. Journal of Open Source Software, 5(56), 1–7. doi:10.21105/joss.02815

Grissom, R. J. (1994). Statistical analysis of ordinal categorical status after therapies. Journal of
Consulting and Clinical Psychology, 62(2), 281–284. doi:10.1037/0022-006X.62.2.281

Mangiafico, S. S. (2016). Summary and analysis of extension program evaluation in R (1.20.01).
Rutger Cooperative Extension.

McGraw, K. O., & Wong, S. P. (1992). A common language effect size statistic. Psychological
Bulletin, 111(2), 361–365. doi:10.1037/0033-2909.111.2.361

Tulimieri, D. (2021). CLES/CLES. https://github.com/tulimid1/CLES/tree/main

Wolfe, D. A., & Hogg, R. V. (1971). On constructing statistics and reporting data. The American
Statistician, 25(4), 27–30. doi:10.1080/00031305.1971.10477278

Examples

# Example 1: Dataframe
file2 = 'https://peterstatistics.com/Packages/ExampleData/StudentStatistics.csv'
studentDf = read.csv(file2, sep=';', na.strings=c("", "NA"))
ex1 = studentDf[['Teach_Motivate']]
order = c("Fully Disagree", "Disagree", "Neither disagree nor agree", "Agree", "Fully agree")
es_common_language_os(ex1, levels=order)

# Example 2: Numeric data
ex2 = c(1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5)
es_common_language_os(ex2)

# Example 3: Text data with
ex3 = c("a", "b", "f", "d", "e", "c")
order = c("a", "b", "c", "d", "e", "f")
es_common_language_os(ex3, levels=order)

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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es_common_language_ps Common Language Effect Size (Paired-Samples)

Description

the probability that a randomly selected score from the one population will be greater than a ran-
domly sampled score from the other population.

Usage

es_common_language_ps(
field1,
field2,
dmu = 0,
method = c("dunlap", "mcgraw-wong")

)

Arguments

field1 the scores on the first variable

field2 the scores on the second variable

dmu difference according to null hypothesis (default is 0), only if method="mcgraw-
wong"

method method to use for calculating CL (see details)

Value

cl, float. the common language effect size measure value

The formula used (McGraw & Wong, 1992, p. 363):

CL = Φ(zcl)

With:

zcl =
|x̄1 − x̄2| − dH0√

s21 + s22 − 2× rp × s1 × s2

s2i =

∑n
j=1 (xi,j − x̄i)

2

ni − 1

x̄i =

∑n
j=1 xi,j

ni

rp =

∑n
i=1 (xi,1 − x̄1)× (xi,2 − x̄2)

(n− 1)× s1 × s2

Symbols used:

• n the total number of pairs

• xi,j the i-th score in the j-th variable

• rp the Pearson correlation coefficient
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This equation is used when method="mcgraw-wong"

The formula used for the Dunlap method (Dunlap, 1994, p. 509):

CL = sin−1 (r) +
1

2

This equation is used when method="dunlap".

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Dunlap, W. P. (1994). Generalizing the common language effect size indicator to bivariate normal
correlations. Psychological Bulletin, 116(3), 509–511. https://doi.org/10.1037/0033-2909.116.3.509

McGraw, K. O., & Wong, S. P. (1992). A common language effect size statistic. Psychological
Bulletin, 111(2), 361–365. https://doi.org/10.1037/0033-2909.111.2.361

es_cont_coeff (Pearson) Contingency Coefficient

Description

(Pearson) Contingency Coefficient

Usage

es_cont_coeff(chi2, n, adj = NULL, r = NULL, c = NULL)

Arguments

chi2 the chi-square test statistic

n the sample size

adj c(NULL, "sakoda") adjustment to use (see details)

r the number of rows, required if adj="sakado"

c the number of columns, required if adj="sakado"

Details

The formula used is (Pearson, 1904, p. 9):

C =

√
χ2

n+ χ2

Symbols used:

• χ2 the chi-square test statistic

• n the sample size, i.e. the sum of all frequencies

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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The maximum value for C would be (Sakoda, 1977, p. 778):

Cmax =

√
m− 1

m

Where m is the minimum of the number of rows, or number of columns.

Sakoda propses to divide the contingency coefficient by this maximum, i.e.

C

Cmax

For a 2x2 table Cole C1 will also divide by the maximum and produce the same result.

Blaikie-Roberts suggest to use as Cmax (Blaikie, 1969, p.19):

Cmax =
4

√
r − 1

r
× c− 1

c

Blaikie refers to his mentor Roberts for this (Blaikie, 2003, p. 115)

Alternative

The ’DescTools’ library also has a function for this: ContCoef()

Value

value of (Pearson) Contingency Coefficient

Author(s)

P. Stikker

Please visit: https://PeterStatistics.com

YouTube channel: https://www.youtube.com/stikpet

References

Blaikie, N. W. H. (1969). Religion, social status, and community involvement: A study in Christchurch.
The Australian and New Zealand Journal of Sociology, 5(1), 14–31. doi:10.1177/144078336900500102

Blaikie, N. W. H. (2003). Analyzing quantitative data: From description to explanation. Sage
Publications Ltd.

Pearson, K. (1904). Contributions to the Mathematical Theory of Evolution. XIII. On the theory of
contingency and its relation to association and normal correlation. Dulau and Co.

Sakoda, J. M. (1977). Measures of Association for Multivariate Contingency Tables. In Proceed-
ings of the Social Statistics Section of the American Statistical Association: Vol. Part III (pp.
777–780).

Examples

chi2Value <- 3.105263
n <- 19
es_cont_coeff(chi2Value, n)
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es_convert Convert Effect Size

Description

Convert Effect Size

Usage

es_convert(es, fr, to, ex1 = NULL, ex2 = NULL)

Arguments

es the effect size value to convert

fr name of the original effect size (see details)

to name of the effect size to convert to (see details)

ex1 extra for some conversions (see details)

ex2 extra for some conversions (see details)

Details

COHEN D
Cohen d to Odds Ratio
fr="cohend", to="or", ex1="chinn"

This uses (Chinn, 2000, p. 3129):

OR = ed×1.81

fr="cohend", to="or", ex1="borenstein"

This uses (Borenstein et. al, 2009, p. 3):

OR = e
d×π√

3

Cohen d to Rank Biserial (Cliff delta)
fr = "cohend", to = "rb"

This uses (Marfo & Okyere, 2019, p. 4):

rb =
2× Φ

(
d
2

)
− 1

Φ
(
d
2

)
COHEN D’
Convert a Cohen d’ to Cohen d
fr="cohendos" to="cohend"

This uses (Cohen , 1988, p. 46):
d = d′ ×

√
2

COHEN F
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Cohen f to Eta-squared
fr="cohenf" to="etasq"

This uses (Cohen, 1988, p. 284):

η2 =
f2

1 + f2

COHEN H’
Cohen h’ to Cohen h
fr = "cohenhos", to = "cohenh"

This uses (Cohen, 1988, p. 203):
h = h′ ×

√
2

COHEN U
Cohen U to Cohen d
fr="cohenu1", to="cohend" fr="cohenu2", to="cohend" fr="cohenu3", to="cohend"

This uses (Cohen, 1988, p. 23):
d = Φ−1 (U3)

d = 2× Φ−1 (U2)

d = 2× Φ−1

(
1

2− U1

)
COHEN w
Cohen w to Contingency Coefficient
fr="cohenw", to="cc"

Cohen w to Cramér V GoF

fr="cohenw", to="cramervgof", ex1=k

This uses (Cohen, 1988, p. 223):
v =

w√
k − 1

Cohen w to Cramér V ind.

fr="cohenw", to="cramervind", ex1=r, ex2=c

This uses:
v =

w√
min (r − 1, c− 1)

Cohen w to Fei

fr="cohenw", to="fei", ex1=minExp/n

This uses:
Fei =

w√
1
pE

− 1

CRAMER V GoF
Cramer’s v for Goodness-of-Fit to Cohen w
fr="cramervgof", to = "cohenw", ex1 = k

This uses (Cohen, 1988, p. 223):
w = v ×

√
df
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EPSILON SQUARED
Epsilon Squared to Eta Squared
fr="epsilonsq", to="etasq", ex1 = n, ex2 = k

This uses:

η2 = 1−
(
1− ϵ2

)
× (n− k)

n− 1

Epsilon Squared to Omega Squared
fr="epsilonsq", to="omegasq", ex1=MS_w, ex2 = SS_t

This uses:

ω̂2 = ϵ2 ×
(
1− MSw

SSt +MSw

)
ETA SQUARED
Eta squared to Cohen f fr="etasq", to="cohenf")

This uses:

f =

√
η2

1− η2

Eta squared to Epsilon Squared fr="etasq", to="epsilonsq", ex1=n, ex2=k

This uses:

ϵ2 =
n× η2 − k +

(
1− η2

)
n− l

FEI
Fei to Cohen w

fr="fei", to="cohenw", ex1=minExp/n

This uses:

w = Fei×
√

1

pE
− 1

Fei to Johnston-Berry-Mielke E fr="fei", to="jbme"

This uses:
E = Fei2

JOHNSTON-BERRY-MIELKE
Johnston-Berry-Mielke E to Cohen w
fr="jbme", to="cohenw", ex1=minExp/n

This uses (Johnston et al., 2006, p. 413):

w =

√
E × (1−)

q

Johnston-Berry-Mielke E to Cohen w

fr="jbme", to="fei"

This uses:
Fei =

√
(E)

ODDS RATIO
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Odds Ratio to Cohen d

fr="or", to="cohend", ex1="chinn"

This uses (Chinn, 2000, p. 3129):

d =
ln (OR)

1.81

fr="or", to="cohend", ex1="borenstein"

This uses (Borenstein et. al, 2009, p. 3):

d = ln (OR)×
√
3

π

Odds Ratio to Yule Q

fr="or", to="yuleq"

This uses:

Q =
OR− 1

OR+ 1

Odds Ratio to Yule Y

This uses

Y =

√
OR− 1√
OR+ 1

OMEGA SQUARED

Omega Squared to Epsilon Squared

fr="omegasq", to="epsilonsq", ex1=MS_w, ex2 = SS_t

This uses:

ϵ2 =
ω̂2

1− MSw

SSt+MSw

RANK BISERIAL (CLIFF DELTA)

Rank Biserial (Cliff delta) to Cohen d

fr = "rb", to = "cohend"

This uses (Marfo & Okyere, 2019, p. 4):

d =
√
2× Φ−1

(
− 1

rb − 2

)
Rank Biserial (Cliff delta) to Vargha-Delaney A

fr = "rb", to = "vda"

This uses:
rb = 2×A− 1

VARGHA-DELANEY A

Vargha-Delaney A to Rank Biserial (Cliff delta)

fr = "vda", to = "rb"
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This uses:
A =

rb + 1

2

YULE Q
Yule Q to Odds Ratio
fr="yuleq", to="or"

This uses:

OR =
1 +Q

1−Q

Yule Q to Yule Y
fr="yuleq", to="yuley"

This uses:

Y =
1− sqrt1−Q2

Q

YULE Y
Yule Y to Yule Q
fr="yuley", to=="yuleq"

This uses:
Q =

2× Y

1 + Y 2

Yule Y to Odds Ratio
fr="yuley", to=="or"

This uses

OR =

(
1 + Y

1− Y

)2

Value

the converted effect size value

Author(s)

P. Stikker

Please visit: https://PeterStatistics.com

YouTube channel: https://www.youtube.com/stikpet

References

Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Converting Among Ef-
fect Sizes. In Introduction to Meta-Analysis. John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470743386

Chinn, S. (2000). A simple method for converting an odds ratio to effect size for use in meta-
analysis. Statistics in Medicine, 19(22), 3127–3131. https://doi.org/10.1002/1097-0258(20001130)19:22<3127::aid-
sim784>3.0.co;2-m

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). L. Erlbaum
Associates.

Johnston, J. E., Berry, K. J., & Mielke, P. W. (2006). Measures of effect size for chi-squared and
likelihood-ratio goodness-of-fit tests. Perceptual and Motor Skills, 103(2), 412–414. https://doi.org/10.2466/pms.103.2.412-
414
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Examples

es_convert(0.3, fr="cohenhos", to = "cohenh")

es_cramer_v_gof Cramer’s V for Goodness-of-Fit

Description

Cramér’s V is one possible effect size when using a chi-square test. This measure is actually de-
signed for the chi-square test for independence but can be adjusted for the goodness-of-fit test
(Kelley & Preacher, 2012, p. 145; Mangiafico, 2016, p. 474).

It gives an estimate of how well the data then fits the expected values, where 0 would indicate that
they are exactly equal. If you use the equal distributed expected values the maximum value would
be 1, otherwise it could actually also exceed 1.

As for a classification Cramér’s V can be converted to Cohen w, for which Cohen provides rules of
thumb.

A Bergsma correction is also possible.

A general explanation can also be found in this YouTube video. The function is shown in this
YouTubevideo and the test is also described at PeterStatistics.com

Usage

es_cramer_v_gof(chi2, n, k, bergsma = FALSE)

Arguments

chi2 the chi-square test statistic

n the sample size

k the number of categories

bergsma optional boolean to indicate the use of the Bergsma correction: FALSE(the de-
fault), or TRUE

Details

The formula used is:

V =

√
χ2
GoF

n× (k − 1)

Symbols used:

• k the number of categories

• n the sample size, i.e. the sum of all frequencies

• χ2
GoF the chi-square value of a Goodness-of-Fit test

https://youtu.be/FZcnk4EYpek
YouTube video
https://peterstatistics.com/Terms/EffectSizes/CramerV.html
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The Bergsma correction uses a different formula.

Ṽ =

√
φ̃2

k̃ − 1

With:

φ̃2 = max

(
0, φ2 − k − 1

n− 1

)

k̃ = k − (k − 1)
2

n− 1

φ2 =
χ2
GoF

n

Cramér described V (1946, p. 282) for use with a test of independence. Others (e.g. K. Kelley &
Preacher, 2012, p. 145; Mangiafico, 2016a, p. 474) added that this can also be use for goodness-of-
fit tests.

For the Bergsma (2013, pp. 324-325) correction the same thing applies

Cramér’s V can be converted to Cohen’s w using es_convert(from="cramervgof", to = "cohenw",
ex1 = df)

Rules-of-thumb for the interpretation can then be used, using th_cohen_w(w)

Value

Cramer’s V value

Alternatives

The lsr library has a similar function: cramersV()

The DescTools library has a similar function: CramerV()

Before, After and Alternatives

Before this you will need a chi-square value. From either: ts_freeman_tukey_gof, for Freeman-
Tukey Test of Goodness-of-Fit. ts_freeman_tukey_read, for Freeman-Tukey-Read Test of Goodness-
of-Fit. ts_g_gof, for G (Likelihood Ratio) Goodness-of-Fit Test. ts_mod_log_likelihood_gof,
for Mod-Log Likelihood Test of Goodness-of-Fit. ts_neyman_gof, for Neyman Test of Goodness-
of-Fit. ts_pearson_gof, for Pearson Test of Goodness-of-Fit. ts_powerdivergence_gof, for
Power Divergence GoF Test. ph_pairwise_gof for Pairwise Goodness-of-Fit Tests. ph_residual_gof_gof
for Residuals Using Goodness-of-Fit Tests

After this you might want to use some rule-of-thumb for the interpretation: th_cramer_v for vari-
ous rules-of-thumb for Cramér V.

or convert to Cohen w: es_convert to convert Cramér’s V to Cohen w (using fr="cramervgof",
to="cohenw", ex1=k). th_cohen_w for various rules-of-thumb for Cohen w.

Alternative effect sizes that use a chi-square value: es_cohen_w, for Cohen w. es_fei, for Fei.
es_jbm_e, for Johnston-Berry-Mielke E.

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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References

Bergsma, W. (2013). A bias-correction for Cramér’s and Tschuprow’s. Journal of the Korean
Statistical Society, 42(3), 323–328. https://doi.org/10.1016/j.jkss.2012.10.002

Cramér, H. (1946). Mathematical methods of statistics. Princeton University Press.

Kelley, K., & Preacher, K. J. (2012). On effect size. Psychological Methods, 17(2), 137–152.
https://doi.org/10.1037/a0028086

Mangiafico, S. S. (2016). Summary and analysis of extension program evaluation in R (1.13.5).
Rutger Cooperative Extension.

Examples

chi2Value <- 3.106
n <- 19
k <- 3
es_cramer_v_gof(chi2Value, n, k)
es_cramer_v_gof(chi2Value, n, k, bergsma=TRUE)

es_cramer_v_ind Cramer’s V for Independence Test

Description

Cramer’s V for Independence Test

Usage

es_cramer_v_ind(chi2, n, r, c, cc = NULL)

Arguments

chi2 the chi-square test statistic

n the sample size

r the number of categories in the first variable (i.e. the number of rows)

c the number of categories in the second variable (i.e. the number of columns)

cc c(NULL, "bergsma") optional to indicate correction to use (default is NULL)

Details

The formula used is:

V =

√
χ2

n× (min (r, c)− 1)

Symbols used:

• r the number of categories in the first variable (i.e. the number of rows)

• c the number of categories in the second variable (i.e. the number of columns)

• n the sample size, i.e. the sum of all frequencies

• χ2 the chi-square statistic
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The Bergsma correction uses a different formula (Bergsma, 2013, pp. 324-325):

VB =

√
φ̃2

min (r̃, c̃)− 1

With:

φ̃2 = max
(
0, φ2 − (r − 1)× (c− 1)

n− 1

)

r̃ = r − (r − 1)
2

n− 1

c̃ = r − (c− 1)
2

n− 1

φ2 =
χ2

n

Value

Cramer’s V value

Author(s)

P. Stikker

Please visit: https://PeterStatistics.com

YouTube channel: https://www.youtube.com/stikpet

References

Bergsma, W. (2013). A bias-correction for Cramér’s and Tschuprow’s. Journal of the Korean
Statistical Society, 42(3), 323–328. https://doi.org/10.1016/j.jkss.2012.10.002

Cramér, H. (1946). Mathematical methods of statistics. Princeton University Press.

Examples

chi2Val = 16.98975
n = 1941
nRows = 5
nCols = 2
es_cramer_v_ind(chi2Val, n, nRows, nCols)
es_cramer_v_ind(chi2Val, n, nRows, nCols, cc="bergsma")
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es_dominance Dominance and a Vargha-Delaney A like effect size measure

Description

This measure could be used with a sign test, since it does not rely on a z-value.

This function is shown in this YouTube video and the measure is also described at PeterStatis-
tics.com

Usage

es_dominance(data, levels = NULL, mu = NULL, out = "dominance")

Arguments

data dataframe with scores as numbers, or if text also provide levels

levels optional vector with levels in order

mu optional parameter to set the hypothesized median. If not used the midrange is
used

out c("dominance","vda"). optional to either show the dominance score or a VDA
like measure: "dominance" (default), "vda"

Details

The formula used is (Mangiafico, 2016, p. 223-224):

D = ppos − pneg

Where:
pi =

ni

n

Symbols used:

• ppos the proportion of cases above the hypothesized median

• pneg the proportion of cases below the hypothesized median

• npos the number of cases above the hypothesized median

• nneg the number of cases below the hypothesized median

• n the total number of cases

The dominance score will range from -1 to 1.

A Vargha-Delaney A (VDA) style effect size is calculated with (Mangiafico, 2016, p. 223-224):

V DAlike =
D + 1

2

This will range from 0 to 1, with 0.5 being the same as a dominance score of 0.

Value

dataframe with the hypothesized median (mu) and the effect size value

https://youtu.be/IlVUjzNouFg
https://peterstatistics.com/Terms/EffectSizes/DominanceScore.html
https://peterstatistics.com/Terms/EffectSizes/DominanceScore.html
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Before, After and Alternatives

Before this measure you might want to perform the test: ts_sign_os, for One-Sample Sign Test.
ts_trinomial_os, for One-Sample Trinomial Test. ts_wilcoxon_os, for One-Sample Wilcoxon
Signed Rank Test.

Alternative effect size measure with ordinal data: es_common_language_os, for the Common Lan-
guage Effect Size. r_rank_biserial_os, for the Rank-Biserial Correlation r_rosenthal, for the
Rank-Biserial Correlation

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Mangiafico, S. S. (2016). Summary and analysis of extension program evaluation in R (1.20.01).
Rutger Cooperative Extension.

Examples

#Example 1: Text dataframe
file2 = 'https://peterstatistics.com/Packages/ExampleData/StudentStatistics.csv'
df2 = read.csv(file2, sep=';', na.strings=c("", "NA"))
ex1 = df2[['Teach_Motivate']]
order = c("Fully Disagree", "Disagree", "Neither disagree nor agree", "Agree", "Fully agree")
es_dominance(ex1, levels=order)

#Example 2: Numeric data
ex2 = c(1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5)
es_dominance(ex2)

es_epsilon_sq Epsilon Squared

Description

An effect size measure to indicate the the strength of the categories on the ordinal/scale field. A 0
would indicate no influence, and 1 a perfect relationship.

This is an attempt to make eta-squared unbiased (applying a population correction ratio) (Kelley,
1935, p. 557). Although a popular belief is that omega-squared is preferred over epsilon-squared
(Keselman, 1975), a later study actually showed that epsilon-squared might be preferred (Okada,
2013).

Tomczak and Tomczak (2014) recommend this as one option to be used with a Kruskal-Wallis test,
however I think they labelled epsilon-squared as eta-squared and the other way around.

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076


68 es_epsilon_sq

Usage

es_epsilon_sq(
catField,
ordField,
categories = NULL,
levels = NULL,
useRanks = FALSE

)

Arguments

catField vector with categories

ordField vector with the scores

categories vector, optional. the categories to use from catField

levels vector, optional. the levels or order used in ordField.

useRanks boolean, optional. Use ranks or use the scores as given in ordfield. Default is
FALSE.

Details

The formula used (Kelley, 1935, p. 557):

ϵ2 =
n× η2 − k +

(
1− η2

)
n− k

Symbols used:

• η2 eta squared

• k the number of categories

• n the sample size

There are quite some variations on this formula.

For example Cureton (1966, p. 605):

ϵ2 = 1− n− 1

n− k
×
(
1− η2

)
Caroll and Nordholm (1975, p. 547):

ϵ2 =
F − 1

F + n−k
k−1

Albers and Lakens (2018, p. 194)

ϵ2 =
F − 1

F + dfw
dfb

Albers and Lakens (2018, p. 188)

ϵ2 =
SSb − dfb ×MSw

SSt

Conversions
To convert ϵ2 to η2 use es_conver(epsilonsq, from="epsilonsq", to="etasq", ex1=n, ex2=k)
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To convert ϵ2 to ω2 use es_convert(epsilonsq, from="etasq", to="omegasq", ex1=MS_w, ex2=SS_t)

Alternatives
library(effectsize)

anova_stats(aov(scores~groups))

epsilon_squared(aov(scores~groups))

Value

epsSq, float. The epsilon squared value

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Albers, C., & Lakens, D. (2018). When power analyses based on pilot data are biased: Inaccurate
effect size estimators and follow-up bias. Journal of Experimental Social Psychology, 74, 187–195.
doi:10.1016/j.jesp.2017.09.004
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Keselman, H. J. (1975). A Monte Carlo investigation of three estimates of treatment magnitude:
Epsilon squared, eta squared, and omega squared. Canadian Psychological Review / Psychologie
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Okada, K. (2013). Is omega squared less biased? A comparison of three major effect size indices
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of some recommended measures of effect size. Trends in Sport Sciences, 1(21), 19–25.

es_eta_sq Eta Squared

Description

An effect size measure to indicate the the strength of the categories on the ordinal/scale field. A 0
would indicate no influence, and 1 a perfect relationship.

It is “the proportion of the variation in Y that is associated with membership of the different groups
defined by X “ (Richardson, 2011, p. 136).

An alternative Epsilon Squared is an attempt to make eta-squared unbiased (applying a population
correction ratio) (Kelley, 1935, p. 557). Although a popular belief is that omega-squared is preferred
over epsilon-squared (Keselman, 1975), a later study actually showed that epsilon-squared might
be preferred (Okada, 2013).

Tomczak and Tomczak (2014) recommend this this as one option to be used with a Kruskal-Wallis
test, however I think they labelled epsilon-squared as eta-squared and the other way around.

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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Usage

es_eta_sq(
catField,
ordField,
categories = NULL,
levels = NULL,
useRanks = FALSE

)

Arguments

catField vector with categories

ordField vector with the scores

categories vector, optional. the categories to use from catField

levels vector, optional. the levels or order used in ordField.

useRanks boolean, optional. Use ranks or use the scores as given in ordfield. Default is
FALSE.

Details

The formula used is (Pearson, 1911, p. 254):

η2 =
SSb

SSt

With:

SSt =

k∑
j=1

nj∑
i=1

(xi,j − x̄)
2

SSb =

k∑
j=1

(x̄j − x̄)
2

x̄j =

∑nj

j=1 xi,j

nj

x̄ =

k∑
j=1

nj∑
i=1

xi,jn

n =

k∑
j=1

nj

Symbols used:

• xi,j the i-th score in category j

• k the number of categories

• nj the sample size of category j

• x̄j the sample mean of category j
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There are variations on the formula that will give the same result, for example:

η2 =
F × (k − 1)

F × (k − 1) + n− k

or

η2 =
F × dfb

F × dfb + dfw

If ranks are used, the eta-squared can also be determined using (Tomczak & Tomczak, 2014, p. 24):

η2 =
H

n− 1

Symbols used:

• n, the total sample size

• k, the number of categories

• SSb, the between sum of squares (sum of squared deviation of the mean)

• SSt, the total sum of squares (sum of squared deviation of the mean)

• F , the F-statistic

• H , H-statistic from Kruskal-Wallis H-test

• dfi, the degrees of freedom of i

• xi,j , the i-th score in category j

• nj , the number of scores in category j

• x̄j , the mean of the scores in category j

• b, is between = factor = treatment = model

• w, is within = error (the variability within the groups)

Eta-squared can be converted to Cohen f, using es_convert(etasq, from="etasq", to="cohenf")

Eta-squared can be converted to Epsilon square, using es_convert(etasq, from="etasq", to="epsilonsq",
ex1=n, ex2=k)

Alternatives

library(lsr)

etaSquared(aov(scores~groups))

library(effectsize)

anova_stats(aov(scores~groups))

eta_squared(aov(scores~groups))

Value

etaSq, float. The eta squared value

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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es_fei Fei

Description

An effect size measure that could be used with a chi-square test or g-test.

Usage

es_fei(chi2, n, minExp)

Arguments

chi2 the chi-square test statistic

n the sample size

minExp the minimum expected count

Details

The formula used (Ben-Shachar et al., 2023, p. 6):

Fei = sqrtfracchi2GoFntimesleft(frac1minleft(pEright)− 1right)

Symbols used

•
chi2GoF , the chi-square value of the goodness-of-fit chi-square test

• n, the sample size

• pE , the expected proportions

Classification A qualification rule-of-thumb could be obtained by converting this to Cohen’s w (use
es_convert(Fei, fr="fei", to="cohenw", ex1=minExp/n))
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Value

the value of Fei

Before, After and Alternatives

Before this you will need a chi-square value. From either: ts_freeman_tukey_gof, for Freeman-
Tukey Test of Goodness-of-Fit. ts_freeman_tukey_read, for Freeman-Tukey-Read Test of Goodness-
of-Fit. ts_g_gof, for G (Likelihood Ratio) Goodness-of-Fit Test. ts_mod_log_likelihood_gof,
for Mod-Log Likelihood Test of Goodness-of-Fit. ts_neyman_gof, for Neyman Test of Goodness-
of-Fit. ts_pearson_gof, for Pearson Test of Goodness-of-Fit. ts_powerdivergence_gof, for
Power Divergence GoF Test. ph_pairwise_gof for Pairwise Goodness-of-Fit Tests. ph_residual_gof_gof
for Residuals Using Goodness-of-Fit Tests

After this you might want to use some rule-of-thumb for the interpretation by converting it to Co-
hen w: es_convert to convert Fei to Cohen w (using fr="fei", to="cohenw", ex1=minExp/n).
th_cohen_w for various rules-of-thumb for Cohen w.

Alternative effect sizes that use a chi-square value: es_cohen_w, for Cohen w. es_cramer_v_gof,
for Cramer’s V for Goodness-of-Fit. es_jbm_e, for Johnston-Berry-Mielke E.

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Ben-Shachar, M. S., Patil, I., Thériault, R., Wiernik, B. M., & Lüdecke, D. (2023). Phi, fei, fo, fum:
Effect sizes for categorical data that use the chi-squared statistic. Mathematics, 11(1982), 1–10.
doi:10.3390/math11091982

Examples

chi2 = 23.5
n = 53
minExp = 14
es_fei(chi2=chi2, n=n, minExp=minExp)

es_freeman_theta Freeman Theta

Description

According to Jacobson (1972, p. 42), this is the only measure for nominal-ordinal data, and is a
modification of Somers d.

It can range from 0 to 1, with 0 indicating no influence of the catField on the scores of the ordField,
and a 1 a perfect relationship.

Alternatives could be eta-squared and epsilon-squared.

Usage

es_freeman_theta(catField, ordField, categories = NULL, levels = NULL)

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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Arguments

catField vector with categories

ordField vector with the scores

categories vector, optional. the categories to use from catField

levels vector, optional. the levels or order used in ordField.

Details

The formula used is (Freeman, 1965, p. 116):

θ =
D

T

With:
D =

∑
Dx,y

Dx,y = |fa − fb|

fa =

nlvl−1∑
i=1

Fx,i ×
nlvl∑

j=i+1

Fy,j



fb =

nlvl∑
i=2

Fx,i ×
i−1∑
j=1

Fy,j


Symbols used:

• Fx,i, from category x, the number of cases with level i.

• nlvl, the number of levels.

• ni, the total number of cases from category i

Value

theta, float. The Freeman Theta value

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Freeman, L. C. (1965). Elementary applied statistics: For students in behavioral science. Wiley.

Jacobson, P. E. (1972). Applying measures of association to nominal-ordinal data. The Pacific
Sociological Review, 15(1), 41–60. doi:10.2307/1388286
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es_glass_delta Glass Delta

Description

An effect size measure when comparing two means, with a specified control group.

Usage

es_glass_delta(
catField,
scaleField,
categories = NULL,
dmu = 0,
control = NULL

)

Arguments

catField A vector with the categorical data

scaleField A vector with the scores

categories Optional to indicate which two categories of catField to use, otherwise first two
found will be used.

dmu Optional difference according to null hypothesis (default is 0)

control Optional to indicate which category to use as control group. Default is first
category found.

Details

The formula used is (Glass, 1976, p. 7):

δ =
x̄1 − x̄2

s2

With:

s2 =

√∑n2

i=1 (x2,i − x̄2)
2

n2 − 1

x̄i =

∑ni

j=1 xi,j

ni

Symbols used:

• xi,j the j-th score in category i

• ni the number of scores in category i

Glass actually uses a ‘control group’ and s2 is then the standard deviation of the control group.

Value

Glass Delata value



76 es_goodman_kruskal_lambda

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Glass, G. V. (1976). Primary, secondary, and meta-analysis of research. Educational Researcher,
5(10), 3–8. https://doi.org/10.3102/0013189X005010003

Examples

#Example 1: dataframe
dataFile = "https://peterstatistics.com/Packages/ExampleData/GSS2012a.csv"
df1 <- read.csv(dataFile, sep=",", na.strings=c("", "NA"))
ex1 = df1['age']
ex1 = replace(ex1, ex1=="89 OR OLDER", "90")
es_glass_delta(df1['sex'], ex1)

#Example 2: vectors
scores = c(20,50,80,15,40,85,30,45,70,60, NA, 90,25,40,70,65, NA, 70,98,40)
groups = c("nat","int","int","nat","int","int","nat","nat","int","int",
"int","int","int","int","nat","int",NA,"nat","int","int")
es_glass_delta(groups, scores)

es_goodman_kruskal_lambda

Goodman-Kruskal Lambda

Description

Goodman-Kruskal Lambda

Usage

es_goodman_kruskal_lambda(
field1,
field2,
categories1 = NULL,
categories2 = NULL,
ties = "first"

)

Arguments

field1 the scores on the first variable

field2 the scores on the second variable

categories1 optional, categories to use for field1

categories2 optional, categories to use for field2

ties c("first", "random", "average") optional to indicate what to do in case of multi-
modal situations.

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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Details

The formula used is (Goodman & Kruskal, 1954, p. 743):

λY |X =
(
∑r

i=1 fi,max)− Cmax

n− Cmax

λX|Y =

(∑c
j=1 fmax,j

)
−Rmax

n−Rmax

λ =
(
∑r

i=1 fi,max) +
(∑c

j=1 fmax,j

)
− Cmax −Rmax

2× n− Cmax −Rmax

The asymptotic standard errors are calculated using (Hartwig, 1973, p. 308):

ASE
(
λY |X

)
0
=

√√√√√
∑

i,j

(
Fi,j ×

(
δci,j − δcj

)2)−
((
∑r

i=1 fi,max)− Cmax)
2

n
n− Cmax

ASE
(
λX|Y

)
0
=

√√√√√∑
i,j

(
Fi,j ×

(
δri,j − δri

)2)−

((∑c
j=1 fmax,j

)
−Rmax

)2
n

n−Rmax

ASE (λ)0 =

√√√√√∑
i,j

(
Fi,j ×

(
δci,j − δcj + δri,j − δri

)2)−

(
(
∑r

i=1 fi,max)− Cmax +
(∑c

j=1 fmax,j

)
−Rmax

)2
n

2× n− Cmax −Rmax

ASE
(
λY |X

)
1
=

√√√√ (n−
∑r

i=1 fi,max)×
(
(
∑r

i=1 fi,max) + Cmax − 2×
∑

i,j

(
Fi,j × δci,j × δcj

))
(n− Cmax)

3

ASE
(
λX|Y

)
1
=

√√√√(n−
∑c

j=1 fmax,j

)
×
((∑c

j=1 fmax,j

)
+Rmax − 2×

∑
i,j

(
Fi,j × δri,j × δri

))
(n−Rmax)

3

ASE (λ)1 =

(∑
i,j

(
Fi,j ×

(
δci,j + δri,j − δcj − δri + λ×

(
δcj + δri

))2))− 4× n× λ2

2× n− Cmax −Rmax

With:

δci,j

{
1 if j = column indexfi,max

0 else

δcj

{
1 if j = column indexCmax

0 else

δri,j

{
1 if i = row indexfmax,j

0 else

δri

{
1 if i = column indexRmax

0 else
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The test is performed using:

zi =
λi

ASE (i)0

sig. = 2× (1− Φ (|zi|))

Symbols used

• Fi,j the absolute frequency (observed count) from row i and column j.

• c the number of columns

• r the number of rows

• Ri row total of row i, it can be calculated using Ri =
∑c

j=1 Fi,j

• Cj column total of column j, it can be calculated using Cj =
∑r

i=1 Fi,j

• n the total number of cases, it can be calculated in various ways, n =
∑c

j=1 Cj =
∑r

i=1 Ri =∑r
i=1

∑c
j=1 Fi,j

• fi,max is the maximum count of row i, i.e. fi,max = max {Fi,1, Fi,2, . . . , Fi,c}
• fmax,j is the maximum count of column j, i.e. fmax,j = max {F1,j , F2,j , . . . , Fr,j}
• Rmax is the maximum of the row totals, i.e. Rmax = max {R1, R2, . . . , Rr}
• Cmax is the maximum of the column totals, i.e. Cmax = max {C1, C2, . . . , Cc}
• Φ (. . . ) the cumulative density function of the standard normal distribution

Unfortunately not much is written about how to deal with situations if more than one row / column
/ cell has the highest (i.e. a multimodal situation). Hartwig proposed three options in case multi-
modal situation occurs: choose random, choose the largest ASE, or average them. This function can
allow you to simply choose the first only (I think SPSS uses this), average them, or simply choose
one at random.

Value

dataframe with the effect size value, asymptotic standard error (both assuming null and alternative),
the test statistic, and p-value

Author(s)

P. Stikker

Please visit: https://PeterStatistics.com

YouTube channel: https://www.youtube.com/stikpet
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es_goodman_kruskal_tau

Goodman-Kruskal tau

Description

Goodman-Kruskal tau

Usage

es_goodman_kruskal_tau(field1, field2, categories1 = NULL, categories2 = NULL)

Arguments

field1 the scores on the first variable

field2 the scores on the second variable

categories1 optional, categories to use for field1

categories2 optional, categories to use for field2

Details

The formula used is (Goodman & Kruskal, 1954, p. 759):

τY |X =
n×

∑r
i=1

∑c
j=1

F 2
i,j

Ri
−
∑c

j=1 C
2
j

n2 −
∑c

j=1 C
2
j

sig. = 1− χ2
(
(n− 1)× (c− 1)× τY |X , df

)
τX|Y =

n×
∑r

i=1

∑c
j=1

F 2
i,j

Ci
−
∑r

i=1 R
2
i

n2 −
∑r

i=1 R
2
i

sig. = 1− χ2
(
(n− 1)× (r − 1)× τX|Y , df

)
With:

df = (r − 1)× (c− 1)

Symbols used

• Fi,j the absolute frequency (observed count) from row i and column j.

• c the number of columns

• r the number of rows

• Ri row total of row i, it can be calculated using Ri =
∑c

j=1 Fi,j

• Cj column total of column j, it can be calculated using Cj =
∑r

i=1 Fi,j

• n the total number of cases, it can be calculated in various ways, n =
∑c

j=1 Cj =
∑r

i=1 Ri =∑r
i=1

∑c
j=1 Fi,j

• χ (. . . , . . . ) the cumulative density function of the chi-square distribution

Light and Margolin developed a R2 measure for categorical data, they proposed a test CATANOVA
(Categorical Anova) for this measure. This was a chi-square test (p. 538). Sarndal (1974, p. 178)
concluded that R2 from Light and Mangolin, was the same as Goodman-Kendal tau, and uses their
test for tau. Margolin and Light (1974) reach the same conclusion and proof the equivelance.
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Value

dataframe with the effect size value, the test statistic, degrees of freedom, and p-value

Author(s)

P. Stikker

Please visit: https://PeterStatistics.com

YouTube channel: https://www.youtube.com/stikpet

References
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nal of the American Statistical Association, 49(268), 732–764. https://doi.org/10.2307/2281536

Light, R. J., & Margolin, B. H. (1971). An analysis of variance for categorical data. Journal of the
American Statistical Association, 66(335), 534–544. https://doi.org/10.1080/01621459.1971.10482297

Margolin, B. H., & Light, R. J. (1974). An analysis of variance for categorical data, II: Small
sample comparisons with chi square and other competitors. Journal of the American Statistical
Association, 69(347), 755–764. https://doi.org/10.1080/01621459.1974.10480201
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https://doi.org/10.1007/BF02291467

es_hedges_g_is Hedges g / Cohen ds (independent samples)

Description

An effect size measure when comparing two means. A few different variations are available. See
the details for more information on them.

Usage

es_hedges_g_is(
catField,
scaleField,
categories = NULL,
dmu = 0,
varWeighted = TRUE,
corr = c(NULL, "exact", "hedges", "durlak", "xue")

)

Arguments

catField A vector with the categorical data
scaleField A vector with the scores
categories Optional to indicate which two categories of catField to use, otherwise first two

found will be used.
dmu Optional difference according to null hypothesis (default is 0)
varWeighted Optional boolean to indicate the use of weighted variances or not. Default is

TRUE.
corr approximation to use. Either NULL (default), ’exact’, ’hedges’, ’durlak’, ’xue’
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Details

The formula used is (Hedges, 1981, p. 110):

g =
x̄1 − x̄2

sp

With:

sp =

√
SS2

1 + SS2
2

n− 2

SSi =

ni∑
j=1

(xi,j − x̄i)
2

x̄i =

∑ni

j=1 xi,j

ni

Symbols used:

• xi,j the j-th score in category i
• ni the number of scores in category i

This is also what Cohen refers to as ds (Cohen, 1988, p. 66).

This uses by default the formula as shown above for sp. However, sometimes the unweighted
version is used. If varWeighted=FALSE the following will be used instead:

sp =

√
s21 + s22

2

Hedges proposes the following exact bias correction (Hedges, 1981, p. 111):

gc = g × Γ (m)

Γ
(
m− 1

2

)
×

√
m

With:
m =

df

2
df = n1 + n2 − 2 = n− 2

Symbols used:

• df the degrees of freedom
• n the sample size (i.e. the number of scores)
• Γ (. . . ) the gamma function

The formula used for the approximation for this correction from Hedges (1981, p. 114) (appr="hedges"):

gc = g ×
(
1− 3

4× df − 1

)
This approximation can also be found in Hedges and Olkin (1985, p. 81) and Cohen (1988, p. 66)

The formula used for the approximation from Durlak (2009, p. 927) (appr="durlak"):

gc = g × n− 3

n− 2.25
×
√

n− 2

n

The formula used for the approximation from Xue (2020, p. 3) (appr="xue"):

gc = g × 12

√
1− 9

df
+

69

2× df2
− 72

df3
+

687

8× df4
− 441

8× df5
+

247

16× df6
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Value

A dataframe with:

g the effect size value

version description of the effect size calculated

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). L. Erlbaum
Associates.

Durlak, J. A. (2009). How to select, calculate, and interpret effect sizes. Journal of Pediatric
Psychology, 34(9), 917–928. https://doi.org/10.1093/jpepsy/jsp004

Hedges, L. V. (1981). Distribution Theory for Glass’s Estimator of Effect Size and Related Estima-
tors. Journal of Educational Statistics, 6(2), 107–128. https://doi.org/10.2307/1164588

Hedges, L. V., & Olkin, I. (1985). Statistical methods for meta-analysis. Academic Press.

Xue, X. (2020). Improved approximations of Hedges’ g*. https://doi.org/10.48550/arXiv.2003.06675

Examples

#Example 1: dataframe
dataFile = "https://peterstatistics.com/Packages/ExampleData/GSS2012a.csv"
df1 <- read.csv(dataFile, sep=",", na.strings=c("", "NA"))
ex1 = df1['age']
ex1 = replace(ex1, ex1=="89 OR OLDER", "90")
es_hedges_g_is(df1['sex'], ex1)

#Example 2: vectors
scores = c(20,50,80,15,40,85,30,45,70,60, NA, 90,25,40,70,65, NA, 70,98,40)
groups = c("nat","int","int","nat","int","int","nat","nat","int","int",
"int","int","int","int","nat","int",NA,"nat","int","int")
es_hedges_g_is(groups, scores)

es_hedges_g_os Hedges g (for one-sample)

Description

This function will calculate Hedges g (one-sample). An effect size measure that can be used with a
test for a single mean (for example a one-sample Student t-test).

Hedges g is a correction for Cohen’s d’. Actually Hedges (1981) didn’t seem to have a one-sample
version for Hedges g, and this correction is the one for Hedges g used for the independent samples.

TThe measure is also described at PeterStatistics.com

Usage

es_hedges_g_os(data, mu = NULL, appr = NULL)

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
https://peterstatistics.com/Terms/EffectSizes/HedgesG.html
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Arguments

data vector or dataframe with the numeric scores

mu optional parameter to set the hypothesized mean. If not used the midrange is
used

appr optional approximation to use, NULL will use exact. Either NULL (default),
"hedges", "durlak", or "xue"

Details

The formula used for the exact method (appr=NULL) (Hedges, 1981, p. 111):

g = d′ × Γ (m)

Γ
(
m− 1

2

)
×

√
m

With:

m =
df

2

df = n− 1

Symbols used:

• d′ Cohen’s d for one-sample

• df the degrees of freedom

• n the sample size (i.e. the number of scores)

• Γ (. . . ) the gamma function

The formula used for the approximation from Hedges (1981, p. 114) (appr="hedges"):

g = d′ ×
(
1− 3

4× df − 1

)
The formula used for the approximation from Durlak (2009, p. 927) (appr="durlak"):

g = d′ × n− 3

n− 2.25
×
√

n− 2

n

The formula used for the approximation from Xue (2020, p. 3) (appr="xue"):

g = d′ × 12

√
1− 9

df
+

69

2× df2
− 72

df3
+

687

8× df4
− 441

8× df5
+

247

16× df6

Since Hedges g is a correction for Cohen d’, it can be converted to a regular Cohen d and then rules
of thumb for the interpertation could be used.

Value

dataframe with

• mu, the hypothesized mean used, the effect size value, and method used

• g, Hedges g for a one-sample

• version, description of version used.
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Before, After and Alternatives

Before this you might want to perform a test: ts_student_t_os, for One-Sample Student t-Test.
ts_trimmed_mean_os, for One-Sample Trimmed (Yuen or Yuen-Welch) Mean Test. ts_z_os, for
One-Sample Z-Test.

After this you might want a rule-of-thumb for the effect size, first convert to regular Cohen d:
es_convert, to convert Hedges g to Cohen d, use fr = "cohendos" and to = "cohend". th_cohen_d,
for rules-of-thumb for Cohen d.

Alternative Effect Sizes: es_cohen_d_os, for for Cohen d’. es_common_language_os, for the
Common Language Effect Size.

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Durlak, J. A. (2009). How to select, calculate, and interpret effect sizes. Journal of Pediatric
Psychology, 34(9), 917–928. https://doi.org/10.1093/jpepsy/jsp004

Hedges, L. V. (1981). Distribution Theory for Glass’s Estimator of Effect Size and Related Estima-
tors. Journal of Educational Statistics, 6(2), 107–128. https://doi.org/10.2307/1164588

Xue, X. (2020). Improved approximations of Hedges’ g*. https://doi.org/10.48550/arXiv.2003.06675

Examples

#Example 1: Numeric dataframe
file2 = 'https://peterstatistics.com/Packages/ExampleData/StudentStatistics.csv'
df2 = read.csv(file2, sep=';', na.strings=c("", "NA"))
ex1 = df2['Gen_Age']
es_hedges_g_os(ex1)

#Example 2: Numeric list
ex2 = c(1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5)
es_hedges_g_os(ex2)

es_hedges_g_ps Hedges g (Paired Samples)

Description

Effect size measure for paired samples. This is very similar as Hedges g for independent samples.

Usage

es_hedges_g_ps(
field1,
field2,
dmu = 0,
appr = c("none", "hedges", "durlak", "xue"),
within = TRUE

)

https://PeterStatistics.com
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Arguments

field1 the scores on the first variable

field2 the scores on the second variable

dmu optional the difference according to null hypothesis (default is 0)

appr approximation to use (see details), default is "none"

within boolean to use a correction for correlated pairs

Details

The formula used is the same as for Cohen d_z

The same corrections can then be applied as for the independent samples version. See es_hedges_g_is()
for details.

Alternatives
library(effsize)

datF = na.omit(data.frame(field1, field2))

cohen.d(datF$field1, datF$field2, paired=TRUE, within=TRUE, hedges.correction=TRUE)

cohen.d(datF$field1, datF$field2, paired=TRUE, within=FALSE, hedges.correction=TRUE)

Value

A dataframe with:

g the Hedges g value

version version that was used

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

es_hodges_lehmann_is Hodges-Lehmann Estimator (Independent Samples)

Description

The Hodges-Lehmann estimate, is the median of all the possible differences between two sets of
data. The authors (Hodges & Lehmann, 1963) describe it as the location shift that is needed to align
two distributions (with similar distributions) as much as possible (p. 599).

It is sometimes incorrectly described as the difference between the two medians, but that is incorrect.
It is not uncommon to have a different Hodges-Lehmann estimate than simply taking the difference
between the two medians.

This measure is sometimes mentioned as an effect size measure for a Mann-Whitney U / Wilcoxon
Rank Sum test (van Geloven, 2018), however since it is a median of the possible differences, it is
not standardized (i.e. it doesn’t range between two fixed values, and depends therefor on the data).

Usage

es_hodges_lehmann_is(catField, scores, categories = NULL, levels = NULL)

https://PeterStatistics.com
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Arguments

catField A vector with the categorical data

scores A vector with the scores

categories Optional to indicate which two categories of catField to use, otherwise first two
found will be used.

levels Optional list with the ordinal text values in order

Details

The formula for the Hodges-Lehmann estimator with two samples is (Hodges & Lehmann, 1963,
p. 602):

HL = median (xi − yj |1 ≤ i ≤ nx, 1 ≤ j ≤ ny)

Symbols used:

• xi the i-th score in category x

• xj the j-th score in category y

• ni the number of scores in category i

There might be a faster method to actually determine this. Algorithm 616 (Monahan, 1984), but
couldn’t translate the Fortran to R

Value

HL, the Hodges-Lehmann Estimator

CLE cat. 1 the effect size for the first category

CLE cat. 2 the effect size for the second category

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Hodges, J. L., & Lehmann, E. L. (1963). Estimates of location based on rank tests. The Annals of
Mathematical Statistics, 34(2), 598–611. doi:10.1214/aoms/1177704172

Monahan, J. F. (1984). Algorithm 616: Fast computation of the Hodges-Lehmann location estima-
tor. ACM Transactions on Mathematical Software, 10(3), 265–270. doi:10.1145/1271.319414

van Geloven, N. (2018, March 13). Mann-Whitney U toets [Wiki]. Wikistatistiek. https://wikistatistiek.amc.nl/Mann-
Whitney_U_toets

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076


es_jbm_e 87

es_jbm_e Johnston-Berry-Mielke E

Description

An effect size measure that could be used with a chi-square test or g-test.

The function is shown in this YouTubevideo and the test is also described at PeterStatistics.com

Usage

es_jbm_e(chi2, n, minExp, test = c("chi", "g"))

Arguments

chi2 the chi-square test statistic

n the sample size

minExp the minimum expected count

test optional to indicate if a chi-square tests, or a g (likelihood ratio) test was used.
Either "chi" (default), or "g".

Details

Two versions of this effect size. The formula for a chi-square test is:

Eχ2 =
q

1− q
×

(
k∑

i=1

p2i
qi

− 1

)
=

χ2
GoF × Emin

n× (n− Emin)

For a Likelihood Ratio (G) test:

EL = − 1

ln(q)
×

k∑
i=1

(
pi × ln

(
pi
qi

))
= − 1

ln (q)× χ2
L

2×n

Symbols used:

• q the minimum of all qi
• qi the expected proportion in category i

• pi the observed proportion in category i

• n the total sample size

• Emin the minimum expected count

• χ2
GoF the chi-square test statistic of a Pearson chi-square test of goodness-of-fit

• χ2
L the chi-square test statistic of a likelihood ratio test of goodness-of-fit

Both formulas are from Johnston et al. (2006, p. 413)

A qualification rule-of-thumb could be obtained by converting this to Cohen’s w

Value

JBM’s E value

YouTube video
https://peterstatistics.com/Terms/EffectSizes/JohnstonBerryMielke-E.html
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Before, After and Alternatives

Before this you will need a chi-square value. From either: ts_freeman_tukey_gof, for Freeman-
Tukey Test of Goodness-of-Fit. ts_freeman_tukey_read, for Freeman-Tukey-Read Test of Goodness-
of-Fit. ts_g_gof, for G (Likelihood Ratio) Goodness-of-Fit Test. ts_mod_log_likelihood_gof,
for Mod-Log Likelihood Test of Goodness-of-Fit. ts_neyman_gof, for Neyman Test of Goodness-
of-Fit. ts_pearson_gof, for Pearson Test of Goodness-of-Fit. ts_powerdivergence_gof, for
Power Divergence GoF Test. ph_pairwise_gof for Pairwise Goodness-of-Fit Tests. ph_residual_gof_gof
for Residuals Using Goodness-of-Fit Tests

After this you might want to use some rule-of-thumb for the interpretation by converting it to Cohen
w: es_convert to convert JBM-E to Cohen w (using fr="jbme", to="cohenw", ex1=minExp/n).
th_cohen_w for various rules-of-thumb for Cohen w.

Alternative effect sizes that use a chi-square value: es_cohen_w, for Cohen w. es_cramer_v_gof,
for Cramer’s V for Goodness-of-Fit. es_fei, for Fei.

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Johnston, J. E., Berry, K. J., & Mielke, P. W. (2006). Measures of effect size for chi-squared and
likelihood-ratio goodness-of-fit tests. Perceptual and Motor Skills, 103(2), 412–414. https://doi.org/10.2466/pms.103.2.412-
414

Examples

chi2Value <- 3.106
n <- 19
minExp <- 3
es_jbm_e(chi2Value, n, minExp)
es_jbm_e(chi2Value, n, minExp, test="g")

es_jbm_r Berry-Johnston-Mielke R

Description

A chance-corrected version of eta-squared, as an effect size measure for a Cochran Q test.

Usage

es_jbm_r(data, success = NULL)

Arguments

data dataframe with the scores

success indicator for what is considered a success (default is 1)

https://PeterStatistics.com
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Details

The formula used (Berry et al., 2007 pp. 1237, 1239):

R = 1− δ

µδ

With:

µδ =
2

n× (n− 1)
×

(
n∑

i=1

pi

)
×

(
n−

n∑
i=1

pi

)
−

n∑
i=1

pi × (1− pi)

δ =
1

k ×
(
n
k

) × k∑
c=1

n−1∑
i=1

n∑
j=i+1

|xi,c − xj,c|

pi =

∑k
j=1

k

Symbols used

• n the number of rows

• k the number of columns

• xi,j the score in row i and column j

The function actually uses for:

k∑
c=1

n−1∑
i=1

n∑
j=i+1

|xi,c − xj,c| =
k∑

j=1

Cj ×

n−
k∑

j=1

Cj


With:

Cj =

n∑
i=1

xi,j

The original article has in the equation for µδ the first factor written as 2
k×(k−1) . In personal

communication with one of the authors Alexis (2014) indicated this was wrong and n should be
used.

Value

R the effect size measure

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Alexis. (2014, September 7). Answer to “Effect size of Cochran’s Q.” Cross Validated. https://stats.stackexchange.com/a/114649

Berry, K. J., Johnston, J. E., & Mielke, P. W. (2007). An alternative measure of effect size for
Cochran’s Q test for related proportions. Perceptual and Motor Skills, 104(3_suppl), 1236–1242.
doi:10.2466/pms.104.4.1236-1242

https://PeterStatistics.com
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es_kendall_w Eta Squared (Maximum Corrected) for Cochran Q

Description

Eta Squared (Maximum Corrected) for Cochran Q

Usage

es_kendall_w(Q, n, k)

Arguments

Q the Cochran Q statistic

n the sample size (number of rows)

k the number of variables (number of columns)

Details

The formula used (Serlin et al., 1982 p. 788):

η2Q =
Q

n× (k − 1)

Symbols used

• n the number of rows

• k the number of columns

• Q the Cochran Q statistic

The Cochran Q statistic can be obtained using ts_cochran_q() function. The number of rows and
columns of a dataframe with R’s nrow(dataframe) and ncol(dataframe) functions.

Value

es the effect size measure

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Serlin, R. C., Carr, J., & Marascuilo, L. A. (1982). A measure of association for selected nonpara-
metric procedures. Psychological Bulletin, 92(3), 786–790. https://doi.org/10.1037/0033-2909.92.3.786
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es_odds_ratio Odds Ratio

Description

Determines the odds ratio from a 2x2 table.

Odds can sometimes be reported as ’a one in five odds’, but sometimes as 1 : 4. This later notation
is less often seen, but means for every one event on the left side, there will be four on the right side.

The Odds is the ratio of that something will happen, over the probability that it will not. For the
Odds Ratio, we compare the odds of the first category with the second group.

If the result is 1, it indicates that one variable has no influence on the other. A result higher than
1, indicates the odds are higher for the first category. A result lower than 1, indicates the odds are
lower for the first.

Usage

es_odds_ratio(field1, field2, categories1 = NULL, categories2 = NULL)

Arguments

field1 : dataframe field with categories for the rows
field2 : dataframe field with categories for the columns
categories1 : optional list with selection and/or order for categories of field1
categories2 : optional list with selection and/or order for categories of field2

Details

The formula used is (Fisher, 1935, p. 50):

OR =
a/c

b/d
=

a× d

b× c

Symbols used:

• a the count in the top-left cell
• b the count in the top-right cell
• c the count in the bottom-left cell
• d the count in the bottom-right cell
• Φ (. . . ) the cumulative density function of the standard normal distribution

As for the test (McHugh, 2009, p. 123):

sig. = 2× (1− Φ (|z|))

With:

SE =

√
1

a
+

1

b
+

1

c
+

1

d

z =
ln (OR)

SE

The p-value is for the null-hypothesis that the population OR is 1.

The term Odds Ratio can for example be found in Cox (1958, p. 222).
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Value

Dataframe with:

OR the odds ratio

n the sample size

statistic the test statistic (z-value)

p-value the significance (p-value)

Alternatives

R’s stats library has a function that also shows an odds ratio: fisher.test()

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Cox, D. R. (1958). The regression analysis of binary sequences. Journal of the Royal Statistical So-
ciety: Series B (Methodological), 20(2), 215–232. https://doi.org/10.1111/j.2517-6161.1958.tb00292.x

Fisher, R. A. (1935). The logic of inductive inference. Journal of the Royal Statistical Society,
98(1), 39–82. https://doi.org/10.2307/2342435

McHugh, M. (2009). The odds ratio: Calculation, usage, and interpretation. Biochemia Medica,
19(2), 120–126. https://doi.org/10.11613/BM.2009.011

See Also

th_odds_ratio, rules of thumb for odds ratio

es_convert, to convert an odds ratio to Yule Q, Yule Y, or Cohen d.

Examples

#Example: dataframe
dataFile = "https://peterstatistics.com/Packages/ExampleData/GSS2012a.csv"
df1 <- read.csv(dataFile, sep=",", na.strings=c("", "NA"))
es_odds_ratio(df1[['mar1']], df1[['sex']], categories1=c("WIDOWED", "DIVORCED"))

es_omega_sq Omega Squared

Description

An effect size measure for a one-way ANOVA. It indicates the the strength of the categories on the
scale field. A 0 would indicate no influence, and 1 a perfect relationship.

Although a popular belief is that ω2 is preferred over ϵ2 (Keselman, 1975), a later study actually
showed that ϵ2 might be preferred (Okada, 2013).

Usage

es_omega_sq(nomField, scaleField, categories = NULL)

https://PeterStatistics.com
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Arguments

nomField the groups variable

scaleField the numeric scores variable

categories vector, optional. the categories to use from catField

Details

The formula used (Kirk, 1996, p. 751):

ω2 =
(F − 1)× dfb

dfb × (F − 1) + n

There are quite some variations on the formula above, all giving the same final result.

Hays (1973, p. 486) and Albers and Lakens (2018, p. 194):

ω2 =
F − 1

dfw+1
dfb

+ F

Caroll and Nordholm (1975, p. 547)

ω2 =
F − 1

N−k+1
k−1 + F

Hays (1973, p. 485):

ω2 =
SSb − (k − 1)×MSw

SSt +MSw

Olejnik and Algina (2003, p. 435):

ω2 =
SSb − dfb ×MSw

SSb + (n− dfb)×MSw

Symbols

• xi,j the i-th score in category j

• n the total sample size

• nj the number of scores in category j

• k the number of categories

• x̄j the mean of the scores in category j

• MSi the mean square of i

• SSi the sum of squares of i (sum of squared deviation of the mean)

• dfi the degrees of freedom of i

• b is between = factor = treatment = model

• w is within = error (the variability within the groups)

• FF the test statistic of the Fisher/Classic one-way ANOVA



94 es_omega_sq

The formula appears in many different formats. Hays (1973, p. 486) shows:

ω̂2 =
FF − 1

dfw+1
dfb

+ FF

Which can also be found in Albers and Lakens (2018, p. 194).

Kirk (1996, p. 751) shows:

ω̂2 =
dfb × (FF − 1)

dfb × (FF − 1) + n

Instead of using the definitions for dfb and dfw, Caroll and Nordholm (1975, p. 547) show the
formula as:

ω̂2 =
FF − 1

n−k+1
k−1 + FF

They also show Hays original formula (hays1) on p. 188.

Olejnik and Algina (2003, p. 435) use:

ω̂2 =
SSb − dfb ×MSw

SSb + (n− dfb)×MSw

Conversion
To convert ω2 to ϵ2 use es_convert(omegasq, from="omegasq", to="epsilonsq", ex1=MS_w, ex2=SS_t)

Alternatives
library(effectsize)

anova_stats(aov(scores~groups))

omega_squared(aov(scores~groups))

Value

the omega squared value

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Albers, C., & Lakens, D. (2018). When power analyses based on pilot data are biased: Inaccurate
effect size estimators and follow-up bias. Journal of Experimental Social Psychology, 74, 187–195.
doi:10.1016/j.jesp.2017.09.004

Carroll, R. M., & Nordholm, L. A. (1975). Sampling characteristics of Kelley’s ϵ and Hays’ ω.
Educational and Psychological Measurement, 35(3), 541–554. doi:10.1177/001316447503500304

Hays, W. L. (1973). Statistics for the social sciences (2nd ed.). Holt, Rinehart and Winston.

Keselman, H. J. (1975). A Monte Carlo investigation of three estimates of treatment magnitude:
Epsilon squared, eta squared, and omega squared. Canadian Psychological Review / Psychologie
Canadienne, 16(1), 44–48. doi:10.1037/h0081789

Kirk, R. E. (1996). Practical significance: A concept whose time has come. Educational and
Psychological Measurement, 56(5), 746–759. doi:10.1177/0013164496056005002

Okada, K. (2013). Is omega squared less biased? A comparison of three major effect size indices
in one-way anova. Behaviormetrika, 40(2), 129–147. doi:10.2333/bhmk.40.129
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Olejnik, S., & Algina, J. (2003). Generalized eta and omega squared statistics: Measures of effect
size for some common research designs. Psychological Methods, 8(4), 434–447. doi:10.1037/1082-
989X.8.4.434

es_pairwise_bin Binary Effect Size for Pairwise Test

Description

When using a pairwise post-hoc test for a single nominal variable, the pair has become binary. This
function then can determine the effect size for each pair.

Options are to use Cohen g, Cohen h’, or the Alternative Ratio.

Usage

es_pairwise_bin(data, expCounts = NULL, es = "coheng")

Arguments

data, list with the data

expCounts dataframe, optional. The categories and expected counts

es, string, optional. effect size to use.Either "coheng" (default), "cohenh", "ar"

Details

If expected counts are provided, for Cohen h’ and the Alternative Ratio these expected counts are
converted to expected proportions

See the separate functions of each effect size for more details.

• es_cohen_g for Cohen g

• es_cohen_h_os for Cohen h’

• es_alt_ratio for the Alternative Ratio

Value

dataframe with

cat1 label of first category in pair

cat2 label of second category in pair

n1 number of cases in first category

n2 number of cases in second category

var followed by the effect size value

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

See Also

ph_pairwise_bin, performs a pairwise binomial test

https://PeterStatistics.com
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es_pairwise_bin_ord Pairwise Binary-Ordinal Effect Sizes

Description

This function determines the effect size for each comparison in a post-hoc analysis of a nominal vs.
ordinal variable (e.g. a Kruskal-Wallis test).

Usage

es_pairwise_bin_ord(
catField,
ordField,
categories = NULL,
levels = NULL,
es = "cle"

)

Arguments

catField vector with categories

ordField vector with the scores

categories vector, optional. the categories to use from catField

levels vector, optional. the levels or order used in ordField.

es string, optional. the effect size to determine.Either "cle" (default), "rb" or "rosen-
thal"

Details

The function simply goes over each possible pair of categories from the catField (adjusted with
categories if used). It then runs for only the scores of those two categories the Common Language
Effect Size (Vargha-Delaney A) or (Glass) Rank Biserial (Cliff delta). If the Rosenthal correlation
is requested, it will perform the post-hoc Dunn test to obtain the z-statistic.

Value

dataframe with

cat1 label of first category in pair

cat2 label of second category in pair

effect size the value of the effect size

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

See Also

es_common_language_is, Common Language Effect size r_rank_biserial_is, rank biserial for
independent samples ph_dunn, post-hoc Dunn test, used to obtain z-value for Rosenthal correlation

https://PeterStatistics.com
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es_phi Pearson/Yule Phi Coefficient / Cole C2 / Mean Square Contingency

Description

After performing chi-square test the question of the effect size comes up. An obvious candidate to
use in a measure of effect size is the test statistic, the χ2. One of the earliest and often mentioned
measure uses this: the phi coefficient (or mean square contingency). Both Yule (1912, p. 596) and
Pearson (1900, p. 12) mention this measure, and Cole (1949, p. 415) refers to it as Cole C2. It is
also the same as Cohen’s w (Cohen, 1988, p. 216), but Cohen does not specify it to be only for 2x2
tables.

It is interesting that this gives the same result, as if you would assign a 0 and 1 to each of the two
variables categories, and calculate the regular correlation coefficient.

Pearson (1904, p. 6) calls the squared value (i.e. not taking the square root) the Mean Square
Contingency.

Usage

es_phi(field1, field2, categories1 = NULL, categories2 = NULL)

Arguments

field1 : dataframe field with categories for the rows

field2 : dataframe field with categories for the columns

categories1 : optional list with order for categories of field1

categories2 : optional list with order for categories of field2

Details

The formula used is (Pearson, 1900, p. 12):

ϕ =
a× d− b× c√

R1 ×R2 × C1 × C2

Symbols used:

• a the count in the top-left cell of the cross table

• b the count in the top-right cell of the cross table

• c the count in the bottom-left cell of the cross table

• d the count in the bottom-right cell of the cross table

• Ri the sum of counts in the i-th row

• Ci the sum of counts in the i-th column

The formula is also sometimes expressed with a χ2 value (Pearson, 1904, p.6; Cohen, 1988, p.
216):

ϕ =

√
χ2

n

Note that Cohen w did not limit the size of the table, but uses the same formula.



98 es_post_hoc_gof

Value

phi coefficient

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). L. Erlbaum
Associates.

Cole, L. C. (1949). The measurement of interspecific associaton. Ecology, 30(4), 411–424. https://doi.org/10.2307/1932444

Pearson, K. (1900). Mathematical Contributions to the Theory of Evolution. VII. On the Correlation
of Characters not Quantitatively Measurable. Philosophical Transactions of the Royal Society of
London. Series A, Containing Papers of a Mathematical or Physical Character, 195, 1–405.

Pearson, K. (1904). Contributions to the Mathematical Theory of Evolution. XIII. On the theory of
contingency and its relation to association and normal correlation. Dulau and Co.

Yule, G. U. (1912). On the methods of measuring association between two attributes. Journal of
the Royal Statistical Society, 75(6), 579–652. https://doi.org/10.2307/2340126

See Also

th_cohen_w, rules of thumb for Cohen w

Examples

#Example: dataframe
dataFile = "https://peterstatistics.com/Packages/ExampleData/GSS2012a.csv"
df1 <- read.csv(dataFile, sep=",", na.strings=c("", "NA"))
es_phi(df1[['mar1']], df1[['sex']], categories1=c("WIDOWED", "DIVORCED"))

es_post_hoc_gof Effect Sizes for a Goodness-of-Fit Post-Hoc Analysis

Description

Determines an effect size for each test (row) from the results of ph_pairwise_bin(), ph_pairwise_gof(),
ph_residual_bin(), or ph_residual_gof().

Usage

es_post_hoc_gof(post_hoc_results, es = "auto", bergsma = FALSE)

Arguments

post_hoc_results

dataframe with the result of either ph_pairwise_bin(), ph_pairwise_gof(), ph_residual_bin(),
or ph_residual_gof()

es string optional, the effect size to determine. Either ’auto’, ’coheng’, ’cohenh’,
’ar’, ’cramerv’, ’cohenw’, ’jbme’, ’fei’, ’rosenthal’

bergsma optional boolean. Use of Bergsma correction, only for Cramér V

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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Details

’auto’ will use Cohen h for exact tests, Rosenthal correlation for z-tests and Cramér’s V otherwise.

Cohen g (’coheng’), Cohen h (’cohenh’) and Alternative Ratio (’ar’) can all be used for any test.

Cramér V (’cramerv’), Cohen w (’cohenw’), Johnston-Berry-Mielke E (’jbme’), and Fei (’fei’) can
be used with chi-square tests (or likelihood ratio tests)

The Rosenthal Correlation (’rosenthal’) can be used with a z-test (proportion/Wald/score/residual).

See the separate functions for each of these for details on the calculations.

Value

a dataframe with for residual post-hoc:

category , the label of the category
name effect size , the effect size value

for pairwise post-hoc

category 1 , the label of the first category
category 2 , the label of the second category
name effect size , the effect size value

Before, After and Alternatives

Before this a post-hoc test might be helpful: ph_pairwise_gof, for Pairwise Goodness-of-Fit Tests.
ph_pairwise_bin, for Pairwise Binary Test. ph_residual_gof_gof, for Residuals Tests using
Binary tests. ph_residual_gof_bin, for Residuals Using Goodness-of-Fit Tests.

After this you might want to use a rule-of-thumb for the interpretation: th_post_hoc_gof, for
various rules-of-thumb.

Effect size in this function: es_cohen_g, for Cohen g. es_cohen_h_os, for Cohen h’. es_alt_ratio,
for Alternative Ratio. es_cramer_v_gof, for Cramer’s V for Goodness-of-Fit. es_cohen_w, for
Cohen’s w. es_jbm_e, for Johnston-Berry-Mielke E. es_fei, for Fei. r_rosenthal, for Rosenthal
Correlation if a z-value is available.

note: the effect size functions are not used themselves in this function, but the same formulas are
used.

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

Examples

# Get data
dataFile = "https://peterstatistics.com/Packages/ExampleData/GSS2012a.csv"
gssDf <- read.csv(dataFile, sep=",", na.strings=c("", "NA"))
ex1 = gssDf['mar1']

# Perform a post-hoc test
post_hoc_test = ph_pairwise_bin(ex1, test='binomial')

# Determine the effect sizes
es_post_hoc_gof(post_hoc_test, es='cohenh')

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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es_rmsse Root Mean Square Standardized Effect Size (RMSSE)

Description

An effect size measure for a one-way ANOVA.

Similar as Hedges g, but for a one-way ANOVA. According to Wikipedia "this essentially presents
the omnibus difference of the entire model adjusted by the root mean square" (2023).

Usage

es_rmsse(nomField, scaleField, categories = NULL)

Arguments

nomField the groups variable

scaleField the numeric scores variable

categories vector, optional. the categories to use from catField

Details

The formula used (Steiger & Fouladi, 1997, pp. 244-245):

RMSSE =

√
δ

(k − 1)× n
=

√ ∑k
i=1 α

2
i

(k − 1)× σ2

With:

δ = n×
k∑

i=1

(αi

σ

)2
αi = µi − µ ≈ x̄i − x̄

σ ≈
√

MSw

MSw =
SSw

dfw

dfw = n− k

SSw = SSt − SSb

SSt =

k∑
j=1

nj∑
i=1

(xi,j − x̄)
2

x̄j =

∑nj

i=1 xi,j

nj

x̄ =

∑k
j=1 nj × x̄j

n
=

∑k
j=1

∑nj

i=1 xi,j

n

n =

k∑
j=1

nj

Symbols
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• xi,j the i-th score in category j

• k the number of categories

• n the total sample size

• nj the number of scores in category j

• x̄j the mean of the scores in category j

• x̄theoverallmean

• SSw the within sum of squares (sum of squared deviation of the mean)

• dfw the within degrees of freedom

Note that the original article refers to σ2 as the error variance of the noncentral F-distribution. This
can be approximated with MSw (Smith & Down, 2014, p. 2).

Zhang and Algina (2011) create a robust version of the RMSSE for one-way fixed effects anova.

Value

the rmsse value

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Smith, B., & Dowd, M. (2014). One-way analysis of variance (ANOVA). Dalhousie University.
https://www.mathstat.dal.ca/~stat2080/Fall14/Lecturenotes/anova1.pdf

Steiger, J. H., & Fouladi, R. T. (1997). Noncentrality interval estimation and the evaluation of
statistical models. In L. L. Harlow, S. A. Mulaik, & J. H. Steiger, What if there were no significance
tests? (pp. 221–257). Lawrence Erlbaum Associates.

Wikipedia. (2023). Effect size. In Wikipedia. https://en.wikipedia.org/w/index.php?title=Effect_size&oldid=1175948622

Zhang, G., & Algina, J. (2011). A robust root mean square standardized effect size in one-way fixed-
effects ANOVA. Journal of Modern Applied Statistical Methods, 10(1), 77–96. https://doi.org/10.22237/jmasm/1304222880

es_scott_pi Scott Pi

Description

An effect size meaure, that measures the how strongly two raters or variables, agree with each other.
Full agreement would result in a pi of 1.

The measure is very similar to Cohen’s kappa. The difference is with the calculation of the expected
marginal proportions. Cohen’s kappa uses a squared geometric mean, while Scott’s pi uses squared
arithmetic means.

Scott developed this in criticism on Bennett-Alpert-Goldstein’s S (see es_bag_s()).

Usage

es_scott_pi(field1, field2, categories = NULL)

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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Arguments

field1 vector, the first categorical field
field2 vector, the first categorical field
categories vector, optional, order and/or selection for categories of field1 and field2

Details

The formula used (Scott, 1955, p. 323):

π =
p0 − pe
1− pe

With:

P =

r∑
i=1

Fi,i

p0 =
P

n

pe =

r∑
i=1

(
Ri + Ci

2× n

)2

The asymptotic standard errors is calculated using (Scott, 1955, p. 325):

ASE =

√(
1

1− pe

)2

× p0 × (1− p0)

n− 1

The p-value (significance) is then calculated using:

zπ =
π

ASE

sig. = 2× (1− Φ (zκ))

Symbols used

• Fi,j , the observed count in row i and column j.
• r, is the number of rows (categories in the first variable)
• c, is the number of columns (categories in the second variable)
• n, is the total number of scores
• Ri, the row total of row i.Ri =

∑c
j=1 Fi,j

• Cj , the column total of column j.Cj =
∑r

i=1 Fi,j

Value

Dataframe with:

Scott pi the Scott pi value
n the sample size
statistic the test statistic (z-value)
p-value the significance (p-value)

References

Scott, W. A. (1955). Reliability of content analysis: The case of nominal scale coding. The Public
Opinion Quarterly, 19(3), 321–325.
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es_theil_u Theil U / Uncertainty Coefficient

Description

Theil U is a measure of nominal association. According to Wikipedia: "given Y, what fraction of
the bits of X can we predict? In this case we can think of X as containing the total information, and
of Y as allowing one to predict part of such information." (2022).

The term Theil U can also refer to two completely different measures, often used in forecasting and
sometimes referred to as index of inequality.

Usage

es_theil_u(field1, field2, categories1 = NULL, categories2 = NULL)

Arguments

field1 the scores on the first variable

field2 the scores on the second variable

categories1 optional, categories to use for field1

categories2 optional, categories to use for field2

Details

The formula used:
UY |X =

HX +HY −HXY

HY

UX|Y =
HX +HY −HXY

HX

U = 2× HX +HY −HXY

HX +HY

With:

HX = −
r∑

i=1

Ri

n
ln

(
Ri

n

)

HY = −
c∑

j=1

Cj

n
ln

(
Cj

n

)

HX = −
r∑

i=1

c∑
j=1

Fi,j

n
ln

(
Fi,j

n

)
, for Fi,j > 0

Symbols used

• Fi,j the absolute frequency (observed count) from row i and column j.

• c the number of columns

• r the number of rows

• Ri row total of row i, it can be calculated using Ri =
∑c

j=1 Fi,j

• Cj column total of column j, it can be calculated using Cj =
∑r

i=1 Fi,j
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• n the total number of cases, it can be calculated in various ways, n =
∑c

j=1 Cj =
∑r

i=1 Ri =∑r
i=1

∑c
j=1 Fi,j

The asymptotic standard erros are calculated using:

ASE
(
UY |X

)
1
=

√∑r
i=1

∑c
j=1 Fi,j ×

(
HY × ln

(
Fi,j

Ri

)
+ (HX −HXY )× ln

(
Cj

n

))2
n×H2

Y

ASE
(
UX|Y

)
1
=

√∑r
i=1

∑c
j=1 Fi,j ×

(
HX × ln

(
Fi,j

Cj

)
+ (HY −HXY )× ln

(
Ri

n

))2
n×H2

X

ASE (U)1 =

√∑r
i=1

∑c
j=1 Fi,j ×

(
HXY × ln

(
Ri×Cj

n2

)
− (HX +HY )× ln

(
Fi,j

n

))2
n× (HX +HY )

2

ASE
(
UY |X

)
0
=

√
P − n× (HX +HY −HXY )

2

n×HY

ASE
(
UX|Y

)
0
=

√
P − n× (HX +HY −HXY )

2

n×HX

ASE (U)0 =
2×

√
P − n× (HX +HY −HXY )

2

n× (HX +HY )

With:

P =

r∑
i=1

c∑
j=1

Fi,j ×
(
ln

(
Ri × Cj

n× Fi,j

))
The test statistic is:

Ti =
Ui

ASE (Ui)0

The formula’s were taken from SPSS 15 Algorithms (2006, p. 117), unclear what the original
source is, probably Theil (1970) or Theil (1972)

Value

dataframe with

dependent the field used as dependent variable

n the sample size

value the Theil U value

ASE_0 the asymptotic standard error assuming the null hypothesis

ASE_1 the asymptotic standard error assuming the alternative hypothesis

statistic the z-value

p-value the significance (p-value)

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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References

SPSS. (2006). SPSS 15.0 algorithms.

Theil, H. (1970). On the estimation of relationships involving qualitative variables. American
Journal of Sociology, 76(1), 103–154. doi:10.1086/224909

Theil, H. (1972). Statistical decomposition analysis: With applications in the social and adminis-
trative sciences (Vol. 14). North-Holland Pub. Co.; American Elsevier Pub. Co.

Wikipedia. (2022). Uncertainty coefficient. In Wikipedia. https://en.wikipedia.org/w/index.php?title=Uncertainty_coefficient&oldid=1099636947#Definition

es_tschuprow_t Tschuprow T

Description

Tschuprow T

Usage

es_tschuprow_t(chi2, n, r, c, cc = NULL)

Arguments

chi2 the chi-square test statistic

n the sample size

r the number of categories in the first variable (i.e. the number of rows)

c the number of categories in the second variable (i.e. the number of columns)

cc c(NULL, "bergsma") optional to indicate correction to use (default is NULL)

Details

The formula used is:

T =

√
χ2

n×
√

(r − 1)× (c− 1)

Symbols used:

• r the number of categories in the first variable (i.e. the number of rows)

• c the number of categories in the second variable (i.e. the number of columns)

• n the sample size, i.e. the sum of all frequencies

• χ2 the chi-square statistic

The formula is taken from Bergsma (2013, p. 324) who refers to Tschuprow (1925, 1939).

The Bergsma correction uses a different formula (Bergsma, 2013, pp. 324-325):

VB =

√
φ̃2√

(r̃ − 1)× (c̃− 1)

With:

φ̃2 = max
(
0, φ2 − (r − 1)× (c− 1)

n− 1

)
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r̃ = r − (r − 1)
2

n− 1

c̃ = r − (c− 1)
2

n− 1

φ2 =
χ2

n

Value

Tschuprow T value

Author(s)

P. Stikker

Please visit: https://PeterStatistics.com

YouTube channel: https://www.youtube.com/stikpet

References

Bergsma, W. (2013). A bias-correction for Cramér’s and Tschuprow’s. Journal of the Korean
Statistical Society, 42(3), 323–328. https://doi.org/10.1016/j.jkss.2012.10.002

Tschuprow, A. A. (1925). Grundbegriffe und Grundprobleme der Korrelationstheorie. B.G. Teub-
ner.

Tschuprow, A. A. (1939). Principles of the mathematical theory of correlation (M. Kantorowitsch,
Trans.). W. Hodge.

Examples

chi2Val = 16.98975
n = 1941
nRows = 5
nCols = 2
es_tschuprow_t(chi2Val, n, nRows, nCols)
es_tschuprow_t(chi2Val, n, nRows, nCols, cc="bergsma")

he_AS71 Helper Function - Algorithm AS 71

Description

Helper Function - Algorithm AS 71

Usage

he_AS71(S, N)

Arguments

S the test statistic

N the sample size
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Details

Algorithm AS 71 (Best & Gipps, 1974) uses as test statistic:

S =

(
n

2

)
× |τ | = n× (n− 1)

2
× |τ |

The Fortran code was translated to R by myself.

Value

pValue upper tail p-value of Kendall tau Distribution

Author(s)

P. Stikker

Please visit: https://PeterStatistics.com

YouTube channel: https://www.youtube.com/stikpet

References

Best, D. J., & Gipps, P. G. (1974). Algorithm AS 71: The upper tail probabilities of Kendall’s tau.
Applied Statistics, 23(1), 98–100. https://doi.org/10.2307/2347062

he_AS89 Helper Function - Algorithm AS 89

Description

Algorithm AS 89 (Best & Roberts, 1975) is for upper-tail probabilities

Usage

he_AS89(n, IS)

Arguments

n the number of scores (should be equal in both variables)

IS the test statistic (see details)

Details

The test statistic S defined as:

S =

n∑
i=1

d2i =

n∑
i=1

(rxi
− ryi

)
2

Which if there are no ties is equal to:

S =

(
n3 − n

)
× (1− rs)

6
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Value

pValue the two-sided significance (p-value)

Author(s)

P. Stikker

Please visit: https://PeterStatistics.com

YouTube channel: https://www.youtube.com/stikpet

References

Best, D. J., & Roberts, D. E. (1975). Algorithm AS 89: The upper tail probabilities of Spearman’s
rho. Applied Statistics, 24(3), 377–379. https://doi.org/10.2307/2347111

Examples

n = 12
S = 8
he_AS89(n, S)

he_find_combinations Find Combinations

Description

Helper function for the multinomial cumulative distribution. Will return all possible combinations
to distribute n items over k categories.

Usage

he_find_combinations(n, k)

Arguments

n int with the sample size

k int with the number of categories

Value

A float with the requested probability

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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he_import_global Import global

Description

Only here to import the stats library

Usage

he_import_global()

he_kendall Helper Function - Kendall Algorithm

Description

Helper Function - Kendall Algorithm

Usage

he_kendall(n, c)

Arguments

n the sample size

c the number of concordant pairs

Details

An algorithm found at https://github.com/scipy/scipy/blob/v1.10.1/scipy/stats/_mstats_basic.py#L774-
L898 was adapted. This refers to Kendall (1970), and uses the helper function he_kendall(n, C).
Where C = nc, i.e. the number of concordant pairs. This algorithm already returns a two-tailed
result.

Value

pValue upper tail p-value of Kendall tau Distribution

Author(s)

P. Stikker

Please visit: https://PeterStatistics.com

YouTube channel: https://www.youtube.com/stikpet
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he_owa_table One-Way ANOVA table

Description

Function to generate a one-way anova table

Usage

he_owa_table(scores, groups)

Arguments

scores a vector with the numeric scores

groups a vector with the data containing the categories

Value

a dataframe with the ANOVA table

Author(s)

P. Stikker

Please visit: https://PeterStatistics.com

YouTube channel: https://www.youtube.com/stikpet

Examples

scores = c(20, 50, 80, 15, 40, 85, 30, 45, 70, 60, NA, 90, 25, 40, 70,
65, NA, 70, 98, 40, 65, 60, 35, NA, 50, 40, 75, NA, 65, 70, NA, 20, 80,
35, NA, 68, 70, 60, 70, NA, 80, 98, 10, 40, 63, 75, 80, 40, 90, 100, 33,
36, 65, 78, 50)
groups = c("R","H","D","R","H","D","R", "H", "D", "R", "H", "D", "R", "H",
"D", "R", "H", "D", "R", "H", "D", "R", "H", "D", "R", "H", "D", "R", "H",
"D", "R", "H", "D", "R", "H", "D", "R", "H", "D", "R", "H", "D", "R", "H",
"D", "R", "H", "D", "H", "D", "H", "H", "H", "H", "H")
he_owa_table(scores, groups)

he_permutations Helper Function for Permutations

Description

This function was posted by Museful (2013). It creates all possible permutations.

Usage

he_permutations(n)
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Arguments

n the number of scores

Value

A all possible permutations of integers from 1 to n

Author(s)

P. Stikker

Please visit: https://PeterStatistics.com

YouTube channel: https://www.youtube.com/stikpet

References

Museful. (2013, November 25). Answer to “Generating all distinct permutations of a list in R.”
Stack Overflow. https://stackoverflow.com/a/20199902/12149706

Examples

he_permutations(5)

he_quantileIndexing Quartile Indexing

Description

Helper function for me_quantiles and he_quantileIndexing to return the index number of the
quantiles.

Usage

he_quantileIndexing(
data,
k = 4,
method = c("sas1", "sas4", "hl", "excel", "hf8", "hf9")

)

Arguments

data dataframe with scores as numbers

k : number of quantiles

method indexing method to use
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Details

Six alternatives for the indexing is: Most basic (SAS1):

iQi = n× pi

SAS4 method uses for indexing (SAS, 1990, p. 626; Snedecor, 1940, p. 43):

iQi = (n+ 1)× pi

Hog and Ledolter use for their indexing (Hogg & Ledolter, 1992, p. 21; Hazen, 1914, p. ?):

iQi = n× pi +
1

2

MS Excel uses for indexing (Gumbel, 1939, p. ?; Hyndman & Fan, 1996, p. 363):

iQi = (n− 1)× pi + 1

Hyndman and Fan use for their 8th version (Hyndman & Fan, 1996, p. 363):

iQi =

(
n+

1

3

)
× pi +

1

3

Hyndman and Fan use for their 9th version (Hyndman & Fan, 1996, p. 364):

iQi =

(
n+

1

4

)
× pi +

3

8

Value

a vector with the quantiles

Author(s)

P. Stikker. Companion Website, YouTube Channel

References

Gumbel, E. J. (1939). La Probabilité des Hypothèses. Compes Rendus de l’ Académie des Sciences,
209, 645–647.

Hazen, A. (1914). Storage to be provided in impounding municipal water supply. Transactions of
the American Society of Civil Engineers, 77(1), 1539–1640. https://doi.org/10.1061/taceat.0002563

Hogg, R. V., & Ledolter, J. (1992). Applied statistics for engineers and physical scientists (2nd int.).
Macmillan.

Hyndman, R. J., & Fan, Y. (1996). Sample quantiles in statistical packages. The American Statisti-
cian, 50(4), 361–365. https://doi.org/10.2307/2684934

SAS. (1990). SAS procedures guide: Version 6 (3rd ed.). SAS Institute.

Snedecor, G. W. (1940). Statistical methods applied to experiments in agriculture and biology (3rd
ed.). The Iowa State College Press.

https://PeterStatistics.com
https://www.youtube.com/stikpet
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he_quantilesIndex Quantile Numeric Based on Index

Description

Helper function for me_quartiles to return the quartile as a number of the first and third quartile
with different methods of rounding.

Usage

he_quantilesIndex(
data,
k = 4,
indexMethod = c("sas1", "sas4", "hl", "excel", "hf8", "hf9"),
qLfrac = c("linear", "down", "up", "bankers", "nearest", "halfdown", "midpoint"),
qLint = c("int", "midpoint"),
qHfrac = c("linear", "down", "up", "bankers", "nearest", "halfdown", "midpoint"),
qHint = c("int", "midpoint")

)

Arguments

data dataframe with scores as numbers

k : number of quantiles

indexMethod optional to indicate which type of indexing to use

qLfrac optional to indicate what type of rounding to use for quantiles below median

qLint optional to indicate the use of the integer or the midpoint method for quantiles
below median

qHfrac optional to indicate what type of rounding to use for quantiles above median

qHint optional to indicate the use of the integer or the midpoint method for quantiles
above median

Details

If the index is an integer often that integer will be used to find the corresponding value in the sorted
data. However, in some rare methods they argue to take the midpoint between the found index and
the next one, i.e. to use:

iQi = iQi +
1

2

If the index has a fractional part, we could use linear interpolation. It can be written as:

X [⌊iQi⌋] +
iQi − ⌊iQi⌋
⌈iQi⌉ − ⌊iQi⌋

× (X [⌈iQi⌉]−X [⌊iQi⌋])

Where:

• X [x] is the x-th score of the sorted scores

• ⌊. . . ⌋ is the function to always round down

• ⌈. . . ⌉ is the function to always round up
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Or we can use ’rounding’. But there are different versions of rounding. Besides the already men-
tioned round down and round up versions:

• ⌊. . . ⌉ to indicate rounding to the nearest even integer. A value of 2.5 gets rounded to 2, while
1.5 also gets rounded to 2. This is also referred to as bankers method.

• [. . . ] to indicate rounding to the nearest integer. A value that ends with .5 is then always
rounded up.

• ⟨. . . ⟩ to indicate to round a value ending with .5 always down

or even use the midpoint again i.e.:
⌊iQi⌋+ ⌈iQi⌉

2

Value

A vector with the quantiles

Author(s)

P. Stikker. Companion Website, YouTube Channel

he_quartileIndexing Quartile Indexing

Description

Helper function for me_quartiles and he_quartileIndexing to return the index number of the
first and third quartile for different methods of determining this index.

Usage

he_quartileIndexing(
data,
method = c("inclusive", "exclusive", "sas1", "sas4", "hl", "excel", "hf8", "hf9")

)

Arguments

data dataframe with scores as numbers

method indexing method to use

Details

The inclusive method divides the data into two, and then includes the median in each half (if the
sample size is odd). The first and third quarter are then the median of each of these two halves
(Tukey, 1977, p. 32).

For the inclusive method, the index of the first quartile can be found using:

iQ1 =

{
n+2
4 if n mod 2 = 0

n+3
4 else

https://PeterStatistics.com
https://www.youtube.com/stikpet
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And the third quartile:

iQ3 =

{
3×n+2

4 if n mod 2 = 0
3×n+1

4 else

The exclusive method does the same as the inclusive method, but excludes the median in each half
(if the sample size is odd) (Moore & McCabe, 1989, p. 33; Joarder & Firozzaman, 2001, p. 88).

For the exclusive method, the index of the first quartile can be found using:

iQ1 =

{
n+2
4 if n mod 2 = 0

n+1
4 else

And the third quartile:

iQ3 =

{
3×n+2

4 if n mod 2 = 0
3×n+3

4 else

Other methods use a different indexing. Six alternatives for the indexing is: Most basic (SAS1):

iQi = n× pi

SAS4 method uses for indexing (SAS, 1990, p. 626; Snedecor, 1940, p. 43):

iQi = (n+ 1)× pi

Hog and Ledolter use for their indexing (Hogg & Ledolter, 1992, p. 21; Hazen, 1914, p. ?):

iQi = n× pi +
1

2

MS Excel uses for indexing (Gumbel, 1939, p. ?; Hyndman & Fan, 1996, p. 363):

iQi = (n− 1)× pi + 1

Hyndman and Fan use for their 8th version (Hyndman & Fan, 1996, p. 363):

iQi =

(
n+

1

3

)
× pi +

1

3

Hyndman and Fan use for their 9th version (Hyndman & Fan, 1996, p. 364):

iQi =

(
n+

1

4

)
× pi +

3

8

Value

A dataframe with:

q1Index the index of the first (lower) quartile

q3Index the index of the third (upper/higher) quartile

Author(s)

P. Stikker. Companion Website, YouTube Channel

https://PeterStatistics.com
https://www.youtube.com/stikpet
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he_quartilesIndex Quartile Numeric Based on Index

Description

Helper function for me_quartiles to return the quartile as a number of the first and third quartile
with different methods of rounding.

Usage

he_quartilesIndex(
data,
indexMethod = c("inclusive", "exclusive", "sas1", "sas4", "hl", "excel", "hf8",

"hf9"),
q1Frac = c("linear", "down", "up", "bankers", "nearest", "halfdown", "midpoint"),
q1Int = c("int", "midpoint"),
q3Frac = c("linear", "down", "up", "bankers", "nearest", "halfdown", "midpoint"),
q3Int = c("int", "midpoint")

)

Arguments

data dataframe with scores as numbers

indexMethod optional to indicate which type of indexing to use

q1Frac optional to indicate what type of rounding to use for first quarter

q1Int optional to indicate the use of the integer or the midpoint method for first quarter

q3Frac optional to indicate what type of rounding to use for third quarter

q3Int optional to indicate the use of the integer or the midpoint method for third quar-
ter
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Details

If the index is an integer often that integer will be used to find the corresponding value in the sorted
data. However, in some rare methods they argue to take the midpoint between the found index and
the next one, i.e. to use:

iQi = iQi +
1

2

If the index has a fractional part, we could use linear interpolation. It can be written as:

X [⌊iQi⌋] +
iQi − ⌊iQi⌋
⌈iQi⌉ − ⌊iQi⌋

× (X [⌈iQi⌉]−X [⌊iQi⌋])

Where:

• X [x] is the x-th score of the sorted scores

• ⌊. . . ⌋ is the function to always round down

• ⌈. . . ⌉ is the function to always round up

Or we can use ’rounding’. But there are different versions of rounding. Besides the already men-
tioned round down and round up versions:

• ⌊. . . ⌉ to indicate rounding to the nearest even integer. A value of 2.5 gets rounded to 2, while
1.5 also gets rounded to 2. This is also referred to as bankers method.

• [. . . ] to indicate rounding to the nearest integer. A value that ends with .5 is then always
rounded up.

• ⟨. . . ⟩ to indicate to round a value ending with .5 always down

or even use the midpoint again i.e.:

⌊iQi⌋+ ⌈iQi⌉
2

Value

A dataframe with:

q1 the first (lower) quartile

q3 the third (upper/higher) quartile

Author(s)

P. Stikker. Companion Website, YouTube Channel

https://PeterStatistics.com
https://www.youtube.com/stikpet
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he_spearman_permutation

Spearman Exact Distribution using Permutations

Description

This code in this function was posted by cuttlefish44 (2016) It performs a two-tailed exact test for
Spearman rho.

Usage

he_spearman_permutation(ord1, ord2)

Arguments

ord1 the numeric scores of the first variable

ord2 the numeric scores of the second variable

Details

The exact distribution is calculated using the following steps:

1. Determine all possible permutations of the scores in the first variable

2. Determine for each permutation the Spearman rho with the second variable

3. Count how often the Spearman rho is above the Spearman rho between the original two vari-
ables

4. Divide the results by n!

Value

pValue the two-tailed p-value

Author(s)

P. Stikker

Please visit: https://PeterStatistics.com

YouTube channel: https://www.youtube.com/stikpet

References

cuttlefish44. (2016, September 16). Answer to “Different methods for finding spearman’s coeffi-
cient produce diff p-values depending on presence of tied values.” Cross Validated. https://stats.stackexchange.com/a/235380/190640

Examples

ord1 = c(5, 3, 3, 4, 3, 4, 3)
ord2 = c(5, 3, 3, 3, 3, 3, 5)

he_spearman_permutation(ord1, ord2)
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he_tau_permutation Helper Function - Kendall Tau Permutation Test

Description

Helper Function - Kendall Tau Permutation Test

Usage

he_tau_permutation(ord1, ord2)

Arguments

ord1 the numeric scores of the first variable

ord2 the numeric scores of the second variable

Details

Uses a permutation test to calculate the probability. It is an adaption to the code that was posted by
cuttlefish44 (2016) online.

The exact distribution is calculated using the following steps:

1. Determine all possible permutations of the scores in the first variable

2. Determine for each permutation the Kendall tau with the second variable

3. Count how often the Spearman rho is above the Kendall tau between the original two variables

4. Divide the results by n!

Value

pValue upper tail p-value of Kendall tau Distribution

Author(s)

P. Stikker

Please visit: https://PeterStatistics.com

YouTube channel: https://www.youtube.com/stikpet

References

cuttlefish44. (2016, September 16). Answer to “Different methods for finding spearman’s coeffi-
cient produce diff p-values depending on presence of tied values.” Cross Validated. https://stats.stackexchange.com/a/235380/190640

Examples

ord1 = c(5, 8, 6, 3, 2, 9)
ord2 = c(2, 1, 4, 5, 8, 7)
he_tau_permutation(ord1, ord2)
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me_consensus Consensus

Description

The Consensus is a measure of agreement or dispersion for ordinal data. If there is no agreement
the value is 0, and with full agreement 1.

This function is shown in this YouTube video and the measure is also described at PeterStatis-
tics.com

Usage

me_consensus(data, levels = NULL)

Arguments

data a vector with the data

levels optional to indicate the categories in order if data is non-numeric

Details

The formula used (Tastle et al., 2005, p. 98):

Cns (X) = 1 +

k∑
i=1

pi log2

(
1− |i− µX |

dX

)

With:

µX =

∑k
i=1 i× Fi

n

dX = k − 1

pi =
Fi

n

Symbols used:

• Fi the frequency (count) of the i-th category (after they have been sorted)

• n the sample size

• k the number of categories.

Value

cns the consensus score

https://youtu.be/81iJtQtZbGI
https://peterstatistics.com/Terms/Measures/Consensus.html
https://peterstatistics.com/Terms/Measures/Consensus.html
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Before, After and Alternatives

Before this measure you might want an impression using a frequency table or a visualisation:
tab_frequency, for a frequency table vi_bar_stacked_single, or Single Stacked Bar-Chart.
vi_bar_dual_axis, for Dual-Axis Bar Chart.
After this you might want some other descriptive measures: me_hodges_lehmann_os, for the
Hodges-Lehmann Estimate (One-Sample). me_median, for the Median. me_quantiles, for Quan-
tiles. me_quartiles, for Quartiles / Hinges. me_quartile_range, for Interquartile Range, Semi-
Interquartile Range and Mid-Quartile Range.
or perform a test: ts_sign_os, for One-Sample Sign Test. ts_trinomial_os, for One-Sample
Trinomial Test. ts_wilcoxon_os, for One-Sample Wilcoxon Signed Rank Test.

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Tastle, W. J., & Wierman, M. J. (2007). Consensus and dissention: A measure of ordinal dispersion.
International Journal of Approximate Reasoning, 45(3), 531–545. https://doi.org/10.1016/j.ijar.2006.06.024

Examples

# Example 1: Dataframe
file2 = 'https://peterstatistics.com/Packages/ExampleData/StudentStatistics.csv'
studentDf = read.csv(file2, sep=';', na.strings=c("", "NA"))
ex1 = studentDf[['Teach_Motivate']]
order = c("Fully Disagree", "Disagree", "Neither disagree nor agree", "Agree", "Fully agree")
me_consensus(ex1, levels=order)

#Example 2: Numeric data
ex2 = c(1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5)
me_consensus(ex2)

#Example 3: Text data with
ex3 = c("a", "b", "f", "d", "e", "c")
order = c("a", "b", "c", "d", "e", "f")
me_consensus(ex3, levels=order)

me_hodges_lehmann_os Hodges-Lehmann Estimate (One-Sample)

Description

The Hodges-Lehmann Estimate (Hodges & Lehmann, 1963) for a one-sample scenario, is the me-
dian of the Walsh averages. The Walsh averages (Walsh, 1949a, 1949b) are the average of each
possible pair by taking one score and combining it with each of the other scores. Note that each
is only counted once, so taking the second and fifth score is the same as taking the fifth and the
second, so only one of these is used. It does also include self-pairs, e.g. the third score and third
score.
It is in the one-sample case therefor a measure of central tendancy and sometimes referred to as the
pseudo median.
The measure is also described at PeterStatistics.com

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
https://peterstatistics.com/Terms/Measures/HodgesLehmannOS.html
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Usage

me_hodges_lehmann_os(scores, levels = NULL)

Arguments

scores list with scores as numbers, or if text also provide levels

levels optional vector with levels in order

Details

The formula used (Hodges & Lehmann, 1963, p. 599):

HL = median
(
xi + xj

2
|i ≤ i ≤ j ≤ n

)

Value

HL : float, the Hodges-Lehmann Estimate

Before, After and Alternatives

Before this measure you might want an impression using a frequency table or a visualisation:
tab_frequency, for a frequency table vi_bar_stacked_single, or Single Stacked Bar-Chart.
vi_bar_dual_axis, for Dual-Axis Bar Chart.

After this you might want some other descriptive measures: me_consensus, for the Consensus.
me_median, for the Median. me_quantiles, for Quantiles. me_quartiles, for Quartiles / Hinges.
me_quartile_range, for Interquartile Range, Semi-Interquartile Range and Mid-Quartile Range.

or perform a test: ts_sign_os, for One-Sample Sign Test. ts_trinomial_os, for One-Sample
Trinomial Test. ts_wilcoxon_os, for One-Sample Wilcoxon Signed Rank Test.

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Hodges, J. L., & Lehmann, E. L. (1963). Estimates of location based on rank tests. The Annals of
Mathematical Statistics, 34(2), 598–611. doi:10.1214/aoms/1177704172

Monahan, J. F. (1984). Algorithm 616: Fast computation of the Hodges-Lehmann location estima-
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Walsh, J. E. (1949a). Applications of some significance tests for the median which are valid un-
der very general conditions. Journal of the American Statistical Association, 44(247), 342–355.
doi:10.1080/01621459.1949.10483311

Walsh, J. E. (1949b). Some significance tests for the median which are valid under very general
conditions. The Annals of Mathematical Statistics, 20(1), 64–81. doi:10.1214/aoms/1177730091

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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Examples

# Example 1: Dataframe
file2 = 'https://peterstatistics.com/Packages/ExampleData/StudentStatistics.csv'
studentDf = read.csv(file2, sep=';', na.strings=c("", "NA"))
ex1 = studentDf[['Teach_Motivate']]
order = c("Fully Disagree", "Disagree", "Neither disagree nor agree", "Agree", "Fully agree")
me_hodges_lehmann_os(ex1, levels=order)

#Example 2: Numeric data
ex2 = c(1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5)
me_hodges_lehmann_os(ex2)

#Example 3: Text data with
ex3 = c("a", "b", "f", "d", "e", "c")
order = c("a", "b", "c", "d", "e", "f")
me_hodges_lehmann_os(ex3, levels=order)

me_mean Mean

Description

Different types of means can be determined using this function.

The mean is a measure of central tendency, to indicate the center.

This function is shown in this YouTube video and the measure is also described at PeterStatis-
tics.com

Usage

me_mean(
data,
levels = NULL,
version = "arithmetic",
trimProp = 0.1,
trimFrac = "down"

)

Arguments

data, vector or dataframe with scores as numbers

levels : list, optional coding to use

version, optional mean to calculate. Either "arithmetic" (default), "winsorized",
"trimmed", "windsor", "truncated", "olympic", "geometric", "harmonic",
"midrange", or "decile"

trimProp, optional to indicate the total proportion to trim. Default at 0.1 i.e. 0.05 from
each side.

trimFrac, optional parameter to indicate what to do if trimmed amount is non-integer.
Either "down" (default), "prop", "linear"

https://youtu.be/ch2zRuLpw_A
https://peterstatistics.com/Terms/Measures/mean.html
https://peterstatistics.com/Terms/Measures/mean.html
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Details

Arithmetic Mean
One of the three Pythagorean means, and the mean most people would assume if you ask them to
calculate the mean.

It is the fulcrum of the distribution (Weinberg & Schumaker, 1962, p.19). One reference can for
example be found in Aristotle (384-322 BC) (1850, p. 43).

The formula:

x̄ =

∑n
i=1 xi

n

Harmonic Mean
The second of the three Pythagorean means:

H =
n∑n

i=1
1
xi

Geometric Mean
The third of the three Pythagorean means:

G = e
1
n×

∑n
i=1 ln(xi)

Olympic Mean
Simply ignore the maximum and minimum (only once) (Louis et al., 2023, p. 117):

OM =

∑n−1
i=2 xi

n− 2

Mid Range
The average of the maximum and minimum (Lovitt & Holtzclaw, 1931, p. 91):

MR =
minx+maxx

2

Trimmed
With a trimmed (Windsor/Truncated) mean we trim a fixed amount of scores from each side (Tukey,
1962, p. 17). Let pt be the proportion to trim, we then need to trim nt =

pt×n
2 from each side.

If this nt is an integer there isn’t a problem, but if it isn’t we have options. The first option is to
simply round down, i.e. nl = ⌊nt⌋. The trimmed mean is then:

x̄t =

∑n−nl+1
i=nt+1 xi

n− 2× nl

This is used if trimFrac = "down" is set.

We could also use linear interpolation based on the number of scores to trim. We missed out on:
f = nt − nl on each side. So the first and last value we do include should only count for 1 − f
each. The trimmed mean will then be:

x̄t =
(xnt+1 + xn−nl+1)× (1− f) +

∑n−nl

i=nl+2 xi

n− 2× nt

This is used if trimFrac = "prop" is set.
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Alternative, we could take the proportion itself and use linear interpolation on that. The found
nl will be p1 = nl×2

n of the the total sample size. While if we had rounded up, we had used
p2 = (nl+1)×2

n of the the total sample size. Using linear interpolation we then get:

x̄t =
pt − p1
p2 − p1

× (x̄th − x̄tl) + x̄tl

Where x̄tl is the trimmed mean if p1 would be used as a trim proportion, and x̄th is the trimmed
mean if p2 would be used.

This is used if trimFrac = "linear" is set.

Winsorized Mean

Similar as with a trimmed mean, but now the data is not removed, but replaced by the value equal
to the nearest value that is still included (Winsor as cited in Dixon, 1960, p. 385).

W =
nl × (xnl+1 + xn−nl

) +
∑n−nl

nl+1 xi

n

Value

res, the value of the mean

Before, After and Alternatives

Before this you might want to create a binned frequency table or a visualisation: tab_frequency_bins,
to create a binned frequency table. vi_boxplot_single, for a Box (and Whisker) Plot. vi_histogram,
for a Histogram. vi_stem_and_leaf, for a Stem-and-Leaf Display.

After this you might want some other descriptive measures: me_mode_bin, for Mode for Binned
Data. me_variation, for different Measures of Quantitative Variation.

Or a perform a test: ts_student_t_os, for One-Sample Student t-Test. ts_trimmed_mean_os, for
One-Sample Trimmed (Yuen or Yuen-Welch) Mean Test. ts_z_os, for One-Sample Z Test.

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Aristotle. (1850). The nicomachean ethics of Aristotle (R. W. Browne, Trans.). Henry G. Bohn.
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Louis, P., Núñez, M., & Xefteris, D. (2023). Trimming extreme reports in preference aggregation.
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Tukey, J. W. (1962). The future of data analysis. The Annals of Mathematical Statistics, 33(1),
1–67. https://doi.org/10.1214/aoms/1177704711

Weinberg, G. H., & Schumaker, J. A. (1962). Statistics An intuitive approach. Wadsworth Publish-
ing.
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Examples

file2 = 'https://peterstatistics.com/Packages/ExampleData/StudentStatistics.csv'
df2 = read.csv(file2, sep=';', na.strings=c("", "NA"))
#Example 1: Numeric dataframe
ex1 = df2['Gen_Age']
me_mean(ex1)

#Example 2: Numeric list
ex2 = c(1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5)
me_mean(ex2)

#Example 3: Ordinal Pandas Series
ex3 = df2[['Teach_Motivate']]
order = c("Fully Disagree", "Disagree", "Neither disagree nor agree", "Agree", "Fully agree")
me_mean(ex3, levels=order)

me_median Median

Description

Function to determine the median of a set of data. The median can be defined as "the middle value
in a distribution, below and above which lie values with equal total frequencies or probabilities"
(Porkess, 1991, p. 134). This means that 50% of the respondents scored equal or higher to the
median, and also 50% of the respondents scored lower or equal.

This function is shown in this YouTube video and the measure is also described at PeterStatis-
tics.com

Usage

me_median(data, levels = NULL, tieBreaker = c("between", "low", "high"))

Arguments

data vector with the data

levels optional list to indicate what values represent

tieBreaker optional which to return if median falls between two values. Either "between"
(default), "low", or "high"

Details

The formula that is used, assuming the data has been sorted, is:

x̃ =

{
xMI if MI = ⌊MI⌋
xMI−0.5+xMI+0.5

2 if MI ̸= ⌊MI⌋

With:
MI =

n+ 1

2

Symbols used:

https://youtu.be/rgzET32QpsM
https://peterstatistics.com/Terms/Measures/Quantiles.html
https://peterstatistics.com/Terms/Measures/Quantiles.html
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• n the sample size

• xi the i-th score of X, assuming X has been sorted.

• MI the index of the median

• x̃ the median

If the number of scores is an odd number, and the median falls between two categories. With the
tieBreaker it can then be set to return the lower value (low), upper (high), or average (between).

Some old references to the median are Pacioli (1523) in Italian, Cournot (1843, p. 120) in French,
and Galton (1881, p. 246) in English.

Value

the median

Before, After and Alternatives

Before this measure you might want an impression using a frequency table or a visualisation:
tab_frequency, for a frequency table vi_bar_stacked_single, or Single Stacked Bar-Chart.
vi_bar_dual_axis, for Dual-Axis Bar Chart.

After this you might want some other descriptive measures: me_consensus, for the Consensus.
me_hodges_lehmann_os, for the Hodges-Lehmann Estimate (One-Sample). me_quantiles, for
Quantiles. me_quartiles, for Quartiles / Hinges. me_quartile_range, for Interquartile Range,
Semi-Interquartile Range and Mid-Quartile Range.

or perform a test: ts_sign_os, for One-Sample Sign Test. ts_trinomial_os, for One-Sample
Trinomial Test. ts_wilcoxon_os, for One-Sample Wilcoxon Signed Rank Test.

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Cournot, A. A. (1843). Exposition de la théorie des chances et des probabilités. L. Hachette.

Galton, F. (1881). Report of the anthropometric committee. Report of the British Association for
the Advancement of Science, 51, 225–272.

Pacioli, L. (1523). Summa de arithmetica geometria proportioni: Et proportionalita. Paganino de
Paganini.

Porkess, R. (1991). The HarperCollins dictionary of statistics. HarperPerennial.

Examples

file2 = 'https://peterstatistics.com/Packages/ExampleData/StudentStatistics.csv'
df2 = read.csv(file2, sep=';', na.strings=c("", "NA"))
#Example 1: Text dataframe
ex1 = df2[['Teach_Motivate']]
order = c("Fully Disagree", "Disagree", "Neither disagree nor agree", "Agree", "Fully agree")
me_median(ex1, levels=order)

#Example 2: Numeric data
ex2 = c(1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5)
me_median(ex2)

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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#Example 3: Text data with between median
ex3 = c("a", "b", "f", "d", "e", "c")
order = c("a", "b", "c", "d", "e", "f")
me_median(ex3, levels=order)
me_median(ex3, levels=order, tieBreaker="low")
me_median(ex3, levels=order, tieBreaker="high")

#Example 4: Numeric data with between median
ex4 = c(1, 2, 3, 4, 5, 6)
me_median(ex4)
me_median(ex4, tieBreaker="low")
me_median(ex4, tieBreaker="high")

me_mode Mode

Description

The mode is a measure of central tendency and defined as “the abscissa corresponding to the or-
dinate of maximum frequency” (Pearson, 1895, p. 345). A more modern definition would be “the
most common value obtained in a set of observations” (Weisstein, 2002).

The word mode might even come from the French word ’mode’ which means fashion. Fashion is
what most people wear, so the mode is the option most people chose.

If one category has the highest frequency this category will be the modal category and if two or
more categories have the same highest frequency each of them will be the mode. If there is only
one mode the set is sometimes called unimodal, if there are two it is called bimodal, with three
trimodal, etc. For two or more, thse term multimodal can also be used.

An advantage of the mode over many other measures of central tendency (like the median and
mean), is that it can be determined for already nominal data types.

A video on the mode is available here.

This function is shown in this YouTube video and the measure is also described at PeterStatis-
tics.com

Usage

me_mode(data, allEq = c("none", "all"))

Arguments

data vector with the scores to determine the mode from
allEq optional indicator on what to do if maximum frequency is equal for more than

one category. Either "none" (default), or "all"

Details

One small controversy exists if all categories have the same frequency. In this case none of them
has a higher occurence than the others, so none of them would be the mode (see for example Spiegel
& Stephens, 2008, p. 64, Larson & Farber, 2014, p. 69). This is used when allEq="none" and the
default.

On a rare occasion someone might argue that if all categories have the same frequency, then all cate-
gories are part of the mode since they all have the highest frequency. This is used when allEq="all".

https://youtu.be/oPpTE8qt2go
https://youtu.be/WHm7nqlQMHE
https://peterstatistics.com/Terms/Measures/Mode.html
https://peterstatistics.com/Terms/Measures/Mode.html
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Value

A dataframe with:

mode the mode(s)

mode freq. frequency of the mode

Before, After and Alternatives

Before this an impression using a frequency table or a visualisation might be helpful: tab_frequency,
for a frequency table. vi_bar_simple, for Simple Bar Chart. vi_cleveland_dot_plot, for Cleve-
land Dot Plot. vi_dot_plot, for Dot Plot. vi_pareto_chart, for for Pareto Chart. vi_pie, for
Pie Chart.

After this you might want some variation measure: me_qv, for Measures of Qualitative Variation.

or perform a test: ts_pearson_gof, for Pearson Chi-Square Goodness-of-Fit Test. ts_freeman_tukey_gof,
for Freeman-Tukey Test of Goodness-of-Fit. ts_freeman_tukey_read, for Freeman-Tukey-Read
Test of Goodness-of-Fit. ts_g_gof, for G (Likelihood Ratio) Goodness-of-Fit Test. ts_mod_log_likelihood_gof,
for Mod-Log Likelihood Test of Goodness-of-Fit. ts_multinomial_gof, for Multinomial Goodness-
of-Fit Test. ts_neyman_gof, for Neyman Test of Goodness-of-Fit. ts_powerdivergence_gof, for
Power Divergence GoF Test.

If you are looking to determine the mode of binned data use: me_mode_bin, for the mode with
binned data

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Larson, R., & Farber, E. (2014). Elementary statistics: Picturing the world (6th ed.). Pearson.

Pearson, K. (1895). Contributions to the mathematical theory of evolution. II. Skew variation in
homogeneous material. Philosophical Transactions of the Royal Society of London. (A.), 186,
343–414. https://doi.org/10.1098/rsta.1895.0010

Spiegel, M. R., & Stephens, L. J. (2008). Schaum’s outline of theory and problems of statistics (4th
ed.). McGraw-Hill.
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Examples

#Example 1: dataframe
dataFile = "https://peterstatistics.com/Packages/ExampleData/GSS2012a.csv"
df1 <- read.csv(dataFile, sep=",", na.strings=c("", "NA"))
ex1 = df1['mar1']
me_mode(ex1)

#Example 2: a list
ex2 = c("MARRIED", "DIVORCED", "MARRIED", "SEPARATED", "DIVORCED", "NEVER MARRIED", "DIVORCED",
"DIVORCED", "NEVER MARRIED", "MARRIED", "MARRIED", "MARRIED", "SEPARATED", "DIVORCED",
"NEVER MARRIED", "NEVER MARRIED", "DIVORCED", "DIVORCED", "MARRIED")
me_mode(ex2)

#Example 3: Multi-Mode
ex3a = c(1, 1, 2, 3, 3, 4, 5, 6, 6)

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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me_mode(ex3a)
ex3b = c("MARRIED", "DIVORCED", "MARRIED", "DIVORCED", "DIVORCED", "NEVER MARRIED", "MARRIED")
me_mode(ex3b)

#Example 4: All Equal
ex4a = c(1, 1, 2, 2, 3, 3, 6, 6)
me_mode(ex4a)
ex4b = c(1, 1, 2, 2, 3, 3, 6, 6)
me_mode(ex4b, allEq="all")

me_mode_bin Mode for Binned Data

Description

The mode is a measure of central tendency and defined as “the abscissa corresponding to the or-
dinate of maximum frequency” (Pearson, 1895, p. 345). A more modern definition would be “the
most common value obtained in a set of observations” (Weisstein, 2002).

For binned data the mode is the bin with the highest frequency density. This will have the same re-
sult as using the highest frequency if all bins are of equal size. A frequency density is the frequency
divided by the bin size (Zedeck, 2014, pp. 144-145). Different methods exist to narrow this down
to a single value. See the notes for more info on this.

The word mode might even come from the French word ’mode’ which means fashion. Fashion is
what most people wear, so the mode is the option most people chose.

If one category has the highest frequency this category will be the modal category and if two or
more categories have the same highest frequency each of them will be the mode. If there is only
one mode the set is sometimes called unimodal, if there are two it is called bimodal, with three
trimodal, etc. For two or more, thse term multimodal can also be used.

An advantage of the mode over many other measures of central tendency (like the median and
mean), is that it can be determined for already nominal data types.

Usage

me_mode_bin(
data,
nbins = "sturges",
bins = NULL,
incl_lower = TRUE,
adjust = 1,
allEq = "none",
value = "none"

)

Arguments

data list or dataframe

nbins optional, either the number of bins to create, or a specific method from the
tab_nbins() function. Default is "sturges"

bins optional dataframe with lower and upper bounds
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incl_lower optional boolean, to include the lower bound, otherwise the upper bound is in-
cluded. Default is True

adjust optional value to add or subtract to guarantee all scores will fit in a bin

allEq optional indicator on what to do if maximum frequency is equal for more than
one category. Either "none" (default) or "all"

value optional which value to show in the output. Either "none" (default), "midpoint",
or "quadratic"

Details

The function will use the tab_frequency_bins() function with the given parameters nbins, bins,
incl_lower and adjust. See details of that function for more info.

Value to return

If value="midpoint" is used the modal bin(s) midpoints are shown, using:

MPm =
UBm + LBm

2

Where UBm is the upper bound of the modal bin, and LBm the lower bound.

If value="quadratic" is used a quadratic curve is made from the midpoint of the bin prior to the
modal bin, to the midpoint of the bin after the modal bin. This is done using:

M = LBm +
d1

d1 + d2
× (UBm − LBm)

With:

d1 = FDm − FDm−1

d2 = FDm − FDm+1

Where FDm is the frequency density of the modal category.

Multimode

One small controversy exists if all categories have the same frequency. In this case none of them
has a higher occurence than the others, so none of them would be the mode (see for example Spiegel
& Stephens, 2008, p. 64, Larson & Farber, 2014, p. 69). This is used when allEq="none" and the
default.

On a rare occasion someone might argue that if all categories have the same frequency, then all cate-
gories are part of the mode since they all have the highest frequency. This is used when allEq="all".

The function can return the bins that are the modal bins, by setting value="none".

Value

A dataframe with

mode the mode(s)

mode fd frequency density of the mode
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Before, After and Alternatives

Before this you might want to create a binned frequency table or a visualisation: tab_frequency_bins,
to create a binned frequency table. vi_boxplot_single, for a Box (and Whisker) Plot. vi_histogram,
for a Histogram. vi_stem_and_leaf, for a Stem-and-Leaf Display.

After this you might want some other descriptive measures: me_mean, for different types of mean.
me_variation, for different Measures of Quantitative Variation.

Or a perform a test: ts_student_t_os, for One-Sample Student t-Test. ts_trimmed_mean_os, for
One-Sample Trimmed (Yuen or Yuen-Welch) Mean Test. ts_z_os, for One-Sample Z Test.

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References
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Pearson, K. (1895). Contributions to the mathematical theory of evolution. II. Skew variation in
homogeneous material. Philosophical Transactions of the Royal Society of London. (A.), 186,
343–414. https://doi.org/10.1098/rsta.1895.0010

Spiegel, M. R., & Stephens, L. J. (2008). Schaum’s outline of theory and problems of statistics (4th
ed.). McGraw-Hill.
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Zedeck, S. (Ed.). (2014). APA dictionary of statistics and research methods. American Psycholog-
ical Association.

Examples

file2 = 'https://peterstatistics.com/Packages/ExampleData/StudentStatistics.csv'
studentDf = read.csv(file2, sep=';', na.strings=c("", "NA"))
# Example 1: Numeric dataframe
ex1 = studentDf['Gen_Age']
myBins = data.frame(c(0, 20, 25, 30), c(20, 25, 30, 120))
me_mode_bin(ex1, bins=myBins)

# Example 2: Numeric list unimodal
ex2 = c(1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 5)
myBins = data.frame(c(0, 3, 5), c(3, 5, 6))
me_mode_bin(ex2, bins=myBins)

# Example 3: Numeric list bimodal and using midpoint
ex2 = c(1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6)
myBins = data.frame(c(1, 3, 5), c(3, 5, 7))
me_mode_bin(ex2, bins=myBins, value='midpoint')

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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me_quantiles Quantiles

Description

Quantiles split the data into k sections, each containing n/k scores. They can be seen as a generali-
sation of various ’tiles’. For example 4-quantiles is the same as the quartiles, 5-quantiles the same
as quintiles, 100-quantiles the same as percentiles, etc.

Quite a few different methods exist to determine these. See the notes for more information.

This function is shown in this YouTube video and the measure is also described at PeterStatis-
tics.com

Usage

me_quantiles(
data,
levels = NULL,
k = 4,
method = "own",
indexMethod = c("sas1", "sas4", "hl", "excel", "hf8", "hf9"),
q1Frac = c("linear", "down", "up", "bankers", "nearest", "halfdown", "midpoint"),
q1Int = c("int", "midpoint"),
q3Frac = c("linear", "down", "up", "bankers", "nearest", "halfdown", "midpoint"),
q3Int = c("int", "midpoint")

)

Arguments

data : list or dataframe

levels : list, optional coding to use

k : number of quantiles

method : string, optional which method to use to calculate quartiles

indexMethod : "sas1", "sas4", "excel", "hl", "hf8", "hf9", optional to indicate which type of
indexing to use. Default is "sas1"

q1Frac : "linear", "down", "up", "bankers", "nearest", "halfdown", "midpoint", optional
to indicate what type of rounding to use for quantiles below 50 percent. Default
is "linear"

q1Int : "int", "midpoint", optional to indicate the use of the integer or the midpoint
method for first quarter. Default is "int"

q3Frac : "linear", "down", "up", "bankers", "nearest", "halfdown", "midpoint", optional
to indicate what type of rounding to use for quantiles equal or above 50 percent.
Default is "linear"

q3Int : "int", "midpoint", optional to indicate the use of the integer or the midpoint
method for quantiles equal or above 50 percent. Default is "int"
method can be set to "own" and then provide the next parameters, or any of the
methods listed in the notes.

https://youtu.be/119HkHrMu0M
https://peterstatistics.com/Terms/Measures/Quantiles.html
https://peterstatistics.com/Terms/Measures/Quantiles.html
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Details

To determine the quartiles a specific indexing method can be used. See he_quantileIndexing() for
details on the different methods to choose from.

Then based on the indexes either linear interpolation or different rounding methods (bankers, near-
est, down, up, half-down) can be used, or the midpoint between the two values. If the index is an
integer either the integer or the mid point is used.

See the he_quantilesIndex() for details on this.

Note that the rounding method can even vary per quantile, i.e. the one used for the ones below the
median being different than the one those equal or above.

I’ve come across the following methods:

method indexing q1 integer q1 fractional q3 integer q3 fractional
sas1 sas1 use int linear use int linear
sas2 sas1 use int bankers use int bankers
sas3 sas1 use int up use int up
sas5 sas1 midpoint up midpoint up
hf3b sas1 use int nearest use int halfdown
sas4 sas4 use int linear use int linear
ms sas4 use int nearest use int halfdown
lohninger sas4 use int nearest use int nearest
hl2 hl use int linear use int linear
hl1 hl use int midpoint use int midpoint
excel excel use int linear use int linear
pd2 excel use int down use int down
pd3 excel use int up use int up
pd4 excel use int halfdown use int nearest
pd5 excel use int midpoint use int midpoint
hf8 hf8 use int linear use int linear
hf9 hf9 use int linear use int linear

The following values can be used for the method parameter:

1. sas1 = parzen = hf4 = interpolated_inverted_cdf = maple3 = r4. (Parzen, 1979, p. 108; SAS,
1990, p. 626; Hyndman & Fan, 1996, p. 363)

2. sas2 = hf3 = r3. (SAS, 1990, p. 626; Hyndman & Fan, 1996, p. 362)

3. sas3 = hf1 = inverted_cdf = maple1 = r1 (SAS, 1990, p. 626; Hyndman & Fan, 1996, p. 362)

4. sas4 = hf6 = minitab = snedecor = weibull = maple5 = r6 (Hyndman & Fan, 1996, p. 363;
Weibull, 1939, p. ?; Snedecor, 1940, p. 43; SAS, 1990, p. 626)

5. sas5 = hf2 = CDF = averaged_inverted_cdf = r2 (SAS, 1990, p. 626; Hyndman & Fan, 1996,
p. 362)

6. hf3b = closest_observation

7. ms (Mendenhall & Sincich, 1992, p. 35)

8. lohninger (Lohninger, n.d.)

9. hl1 (Hogg & Ledolter, 1992, p. 21)

10. hl2 = hf5 = Hazen = maple4 = r5 (Hogg & Ledolter, 1992, p. 21; Hazen, 1914, p. ?)

11. maple2
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12. excel = hf7 = pd1 = linear = gumbel = maple6 = r7 (Hyndman & Fan, 1996, p. 363; Freund
& Perles, 1987, p. 201; Gumbel, 1939, p. ?)

13. pd2 = lower

14. pd3 = higher

15. pd4 = nearest

16. pd5 = midpoint

17. hf8 = median_unbiased = maple7 = r8 (Hyndman & Fan, 1996, p. 363)

18. hf9 = normal_unbiased = maple8 = r9 (Hyndman & Fan, 1996, p. 363)

hf is short for Hyndman and Fan who wrote an article showcasing many different methods, hl
is short for Hog and Ledolter, ms is short for Mendenhall and Sincich, jf is short for Joarder and
Firozzaman. sas refers to the software package SAS, maple to Maple, pd to Python’s pandas library,
and r to R.

The names linear, lower, higher, nearest and midpoint are all used by pandas quantile func-
tion and numpy percentile function. Numpy also uses inverted_cdf, averaged_inverted_cdf, clos-
est_observation, interpolated_inverted_cdf, hazen, weibull, median_unbiased, and normal_unbiased.

Value

results : the quantiles, or if levels are used also additionally text versions

Before, After and Alternatives

Before this measure you might want an impression using a frequency table or a visualisation:
tab_frequency, for a frequency table vi_bar_stacked_single, or Single Stacked Bar-Chart.
vi_bar_dual_axis, for Dual-Axis Bar Chart.

After this you might want some other descriptive measures: me_consensus, for the Consensus.
me_hodges_lehmann_os, for the Hodges-Lehmann Estimate (One-Sample). me_median, for the
Median. me_quartiles, for Quartiles / Hinges. me_quartile_range, for Interquartile Range,
Semi-Interquartile Range and Mid-Quartile Range.

or perform a test: ts_sign_os, for One-Sample Sign Test. ts_trinomial_os, for One-Sample
Trinomial Test. ts_wilcoxon_os, for One-Sample Wilcoxon Signed Rank Test.

Author(s)

P. Stikker. Companion Website, YouTube Channel
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Examples

# Example 1: Dataframe
file2 = 'https://peterstatistics.com/Packages/ExampleData/StudentStatistics.csv'
studentDf = read.csv(file2, sep=';', na.strings=c("", "NA"))
ex1 = studentDf[['Teach_Motivate']]
order = c("Fully Disagree", "Disagree", "Neither disagree nor agree", "Agree", "Fully agree")
me_quantiles(ex1, levels=order)

#Example 2: Numeric data
ex2 = c(1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5)
me_quantiles(ex2)

#Example 3: Text data with
ex3 = c("a", "b", "f", "d", "e", "c")
order = c("a", "b", "c", "d", "e", "f")
me_quantiles(ex3, levels=order)

me_quartiles Quartiles / Hinges

Description

The quartiles are at quarters of the data (McAlister, 1879, p. 374; Galton, 1881, p. 245). The
median is at 50 percent, and the quartiles at 25 and 75 percent. Note that there are five quartiles, the
minimum value is the 0-quartile, at 25 percent the first (or lower) quartile, at 50 percent the median
a.k.a. the second quartile, at 75 percent the third (or upper) quartile, and the maximum as the fourth
quartile.
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Tukey (1977) also introduced the term Hinges and sorted the values in a W shape, where the bottom
parts of the W are then the hinges.

There are quite a few different methods to determine the quartiles. This function has 19 different
ones. See the details for a description.

This function is shown in this YouTube video and the measure is also described at PeterStatis-
tics.com

Usage

me_quartiles(
data,
levels = NULL,
method = "own",
indexMethod = c("inclusive", "exclusive", "sas1", "sas4", "hl", "excel", "hf8",

"hf9"),
q1Frac = c("linear", "down", "up", "bankers", "nearest", "halfdown", "midpoint"),
q1Int = c("int", "midpoint"),
q3Frac = c("linear", "down", "up", "bankers", "nearest", "halfdown", "midpoint"),
q3Int = c("int", "midpoint")

)

Arguments

data vector or dataframe with scores as numbers, or if text also provide levels

levels optional vector with levels in order

method optional which method to use to calculate quartiles

indexMethod optional to indicate which type of indexing to use. Either "sas1" (default),
"inclusive", "exclusive", "sas4", "excel", "hl", "hf8", or "hf9"

q1Frac, q3Frac optional to indicate what type of rounding to use for each quartile. Either
"linear" (default), "down", "up", "bankers", "nearest", "halfdown", or
"midpoint"

q1Int, q3Int optional to indicate the use of the integer or the midpoint method for each quar-
tile. Either "int" (default), or "midpoint".

Details

To determine the quartiles a specific indexing method can be used. See he_quartileIndexing for
details on the different methods to choose from.

Then based on the indexes either linear interpolation or different rounding methods (bankers, near-
est, down, up, half-down) can be used, or the midpoint between the two values. If the index is an
integer either the integer or the mid point is used. See the he_quartilesIndex for details on this.

Note that the rounding method can even vary per quartile, i.e. the one used for the first quartile
being different than the one for the second.

I’ve come across the following methods:

method indexing q1 integer q1 fractional q3 integer q3 fractional
sas1 sas1 use int linear use int linear
sas2 sas1 use int bankers use int bankers
sas3 sas1 use int up use int up
sas5 sas1 midpoint up midpoint up

https://youtu.be/119HkHrMu0M
https://peterstatistics.com/Terms/Measures/Quantiles.html
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hf3b sas1 use int nearest use int halfdown
sas4 sas4 use int linear use int linear
ms sas4 use int nearest use int halfdown
lohninger sas4 use int nearest use int nearest
hl2 hl use int linear use int linear
hl1 hl use int midpoint use int midpoint
excel excel use int linear use int linear
pd2 excel use int down use int down
pd3 excel use int up use int up
pd4 excel use int halfdown use int nearest
pd5 excel use int midpoint use int midpoint
hf8 hf8 use int linear use int linear
hf9 hf9 use int linear use int linear

The following values can be used for the method parameter:

• inclusive = tukey =hinges = vining. (Tukey, 1977, p. 32; Siegel & Morgan, 1996, p. 77;
Vining, 1998, p. 44).

• exclusive = jf. (Moore & McCabe, 1989, p. 33; Joarder & Firozzaman, 2001, p. 88).
• sas1 = parzen = hf4 = interpolated_inverted_cdf = maple3 = r4. (Parzen, 1979, p. 108; SAS,

1990, p. 626; Hyndman & Fan, 1996, p. 363)
• sas2 = hf3 = r3. (SAS, 1990, p. 626; Hyndman & Fan, 1996, p. 362)
• sas3 = hf1 = inverted_cdf = maple1 = r1 (SAS, 1990, p. 626; Hyndman & Fan, 1996, p. 362)
• sas4 = hf6 = minitab = snedecor = weibull = maple5 = r6 (Hyndman & Fan, 1996, p. 363;

Weibull, 1939, p. ?; Snedecor, 1940, p. 43; SAS, 1990, p. 626)
• sas5 = hf2 = CDF = averaged_inverted_cdf = r2 (SAS, 1990, p. 626; Hyndman & Fan, 1996,

p. 362)
• hf3b = closest_observation
• ms (Mendenhall & Sincich, 1992, p. 35)
• lohninger (Lohninger, n.d.)
• hl1 (Hogg & Ledolter, 1992, p. 21)
• hl2 = hf5 = Hazen = maple4 = r5 (Hogg & Ledolter, 1992, p. 21; Hazen, 1914, p. ?)
• maple2
• excel = hf7 = pd1 = linear = gumbel = maple6 = r7 (Hyndman & Fan, 1996, p. 363; Freund

& Perles, 1987, p. 201; Gumbel, 1939, p. ?)
• pd2 = lower
• pd3 = higher
• pd4 = nearest
• pd5 = midpoint
• hf8 = median_unbiased = maple7 = r8 (Hyndman & Fan, 1996, p. 363)
• hf9 = normal_unbiased = maple8 = r9 (Hyndman & Fan, 1996, p. 363)

hf is short for Hyndman and Fan who wrote an article showcasing many different methods, hl
is short for Hog and Ledolter, ms is short for Mendenhall and Sincich, jf is short for Joarder and
Firozzaman. sas refers to the software package SAS, maple to Maple, pd to Python’s pandas library,
and r to R.

The names linear, lower, higher, nearest and midpoint are all used by pandas quantile func-
tion and numpy percentile function. Numpy also uses inverted_cdf, averaged_inverted_cdf, clos-
est_observation, interpolated_inverted_cdf, hazen, weibull, median_unbiased, and normal_unbiased.
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Value

A dataframe with:

q1 the first (lower) quartile

q3 the third (upper/higher) quartile

q1-text the first (lower) quartile as text (only if levels were used)

q3-text the third (upper/higher) quartile as text (only if levels were used)

Before, After and Alternatives

Before this measure you might want an impression using a frequency table or a visualisation:
tab_frequency, for a frequency table vi_bar_stacked_single, or Single Stacked Bar-Chart.
vi_bar_dual_axis, for Dual-Axis Bar Chart.

After this you might want some other descriptive measures: me_consensus, for the Consensus.
me_hodges_lehmann_os, for the Hodges-Lehmann Estimate (One-Sample). me_median, for the
Median. me_quantiles, for Quantiles. me_quartile_range, for Interquartile Range, Semi-Interquartile
Range and Mid-Quartile Range.

or perform a test: ts_sign_os, for One-Sample Sign Test. ts_trinomial_os, for One-Sample
Trinomial Test. ts_wilcoxon_os, for One-Sample Wilcoxon Signed Rank Test.

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations
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Examples

file2 = 'https://peterstatistics.com/Packages/ExampleData/StudentStatistics.csv'
df2 = read.csv(file2, sep=';', na.strings=c("", "NA"))
#Example 1: Text dataframe
ex1 = df2[['Teach_Motivate']]
order = c("Fully Disagree", "Disagree", "Neither disagree nor agree", "Agree", "Fully agree")
me_quartiles(ex1, levels=order)

#Example 2: Numeric data
ex2 = c(1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5)
me_quartiles(ex2)

me_quartile_range Interquartile Range, Semi-Interquartile Range and Mid-Quartile
Range

Description

There are some measures of dispersion that instead of using the full range (i.e. maximum minus
minimum), make use of the quartiles. The advantage of this, is that it is less influenced by extreme
values.

The Interquartile Range (Galton, 1881, p. 245) is the range how big the difference is between the
third and the first quartile. If Tukey’s method for the quartiles is used (method="tukey"), referred to
as hinges, this is then also known as H-spread (Tukey, 1977, p. 44)

Yule (1911, p. 147) used half the inter-quartile range and labelled this Semi-Interquartile Range
which he preferred over the term Quartile Deviation..

There is also a measure of central tendency that uses the quartiles, the Mid-Quartile (Parzen, 1980,
p. 19), which is the average of the first and second quartile. It is also sometimes referred to as the
Mid-Quartile Range (see for example Luo et al. (2018, p. 2), who refer to Triola, but Triola doesn’t
add the ’range’ (Triola, 2010, p. 120))

The function uses the me_quartiles function and any of the methods from that function can be used.

This function is shown in this YouTube video and the measure is also described at PeterStatis-
tics.com

https://youtu.be/mUl3LFzfsfg
https://peterstatistics.com/Terms/Measures/QuartileRanges.html
https://peterstatistics.com/Terms/Measures/QuartileRanges.html
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Usage

me_quartile_range(
data,
levels = NULL,
measure = c("iqr", "siqr", "qd", "mqr"),
method = "cdf"

)

Arguments

data vector or dataframe with scores as numbers, or if text also provide levels

levels optional vector with levels in order

measure the specific measure to determine. Either "iqr" (default), "siqr", "qd", or
"mqr"

method the method to use to determine the quartiles

Details

The formula used for the Interquartile Range is:

IQR = Q3 −Q1

This can be obtained by setting range="iqr".

The IQR is mentioned in Galton (1881, p. 245) and the H-spread in Tukey (1977, p. 44).

The H-spread can be obtained by setting range="iqr" and method="tukey".

The formula used for the Semi-Interquartile Range (Quartile Deviation) is (Yule, 1911, p. 147):

SIQR =
Q3 −Q1

2

This can be obtained by setting range="siqr" or range="qd".

The formula for the mid-quartile range used is:

MQR =
Q3 +Q1

2

This can be obtained by setting range="mqr".

This formula can be found in Parzen (1980, p. 19), but there are probably older references.

Value

A dataframe with:

Q1 the first (lower) quartile

Q3 the third (upper/higher) quartile

range the range determined
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Before, After and Alternatives

Before this measure you might want an impression using a frequency table or a visualisation:
tab_frequency, for a frequency table vi_bar_stacked_single, or Single Stacked Bar-Chart.
vi_bar_dual_axis, for Dual-Axis Bar Chart.

After this you might want some other descriptive measures: me_consensus, for the Consensus.
me_hodges_lehmann_os, for the Hodges-Lehmann Estimate (One-Sample). me_median, for the
Median. me_quantiles, for Quantiles. me_quartiles, for Quartiles / Hinges.

or perform a test: ts_sign_os, for One-Sample Sign Test. ts_trinomial_os, for One-Sample
Trinomial Test. ts_wilcoxon_os, for One-Sample Wilcoxon Signed Rank Test.

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations
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Examples

file2 = 'https://peterstatistics.com/Packages/ExampleData/StudentStatistics.csv'
df2 = read.csv(file2, sep=';', na.strings=c("", "NA"))
#Example 1: Text dataframe
ex1 = df2[['Teach_Motivate']]
order = c("Fully Disagree", "Disagree", "Neither disagree nor agree", "Agree", "Fully agree")
me_quartile_range(ex1, levels=order)

#Example 2: Numeric data
ex2 = c(1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5)
me_quartile_range(ex2)

me_qv Measures of Qualitative Variation

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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Description

The mode is the measure of central tendancy, to indicate the center for categorical data. Similar as
the arithmetic mean is for numeric data. As with numeric data, the center alone is not always so
informative. If your head is in a burning oven, and your feet are in a freezer, you are on average
fine.

This is one of the reasons, why it is often recommended to add a measure of dispersion. It gives a
clearer picture of the data, and can indicate how diverse it was (how much variation).

For categorical data there are a lot of different measures proposed, but I don’t often see them being
used. The most common one is probably the Variation Ratio. This is simply the percentage of cases
that were not in the modal category.

The specific name of the type of measure for this qualitative variation can vary quite a lot. Some
talk about dominance, differentiation, evenness, entropy, equitability, diversity, and apportionment.

I’ve tried to categorise the measures a bit, based on the calculations. Below is the overview of all
measures available in this function.

nr. group measure source original type
1 mode Freeman Variation Ratio (Freeman, 1965)
2 mode Berger-Parker Index (Berger & Parker, 1970, p. 1345) dominance
3 mode Wilcox MODVR (Wilcox, 1973, p. 7)
4 mode Wilcox RANVR (Wilcox, 1973, p. 8)
5 mean Wilcox AVDEV (Wilcox, 1973, p. 9)
6 mean Gibbs-Poston M4 (Gibbs & Poston, 1975, p. 473) differentiation
7 mean Gibbs-Poston M5 (Gibbs & Poston, 1975, p. 474) differentiation
8 mean Gibbs-Poston M6 (Gibbs & Poston, 1975, p. 474) differentiation
9 mean Wilcox VARNC = (Wilcox, 1973, p. 11)
9 mean Gibbs-Poston M2 = (Gibbs & Poston, 1975, p. 472) differentiation
9 mean Smith-Wilson E1* (Smith & Wilson, 1996, p. 71) evenness
10 mean Wilcox STDEV (Wilcox, 1973, p. 14)
11 entropy Shannon-Weaver Entropy (Shannon & Weaver, 1949, p. 20) entropy
12 entropy Rényi Entropy (Rényi, 1961, p. 549) entropy
13 entropy Wilcox HREL = (Wilcox, 1973, p. 16)
13 entropy Pielou J (Pielou, 1966, p. 141) diversity
14 entropy Sheldon Index (Sheldon, 1969, p. 467) equitability = relative diversity
15 entropy Heip Evenness (Heip, 1974, p. 555) evenness
16 evenness Hill Diversity (Hill, 1973, p. 428) diversity
17 evenness Hill Evenness (Hill, 1973, p. 429) evenness
18 evenness Bulla E (Bulla, 1994, pp. 168-169) evenness
19 evenness Bulla D (Bulla, 1994, p. 169) diversity
20a evenness Simpson D (Simpson, 1949, p. 688) diversity
20b evenness Simpson D biased (Smith & Wilson, 1996, p. 71)
20c evenness Simpson D as diversity (Wikipedia, n.d.)
20d evenness Simpson D as diversity biased = (Berger & Parker, 1970, p. 1345)
20d evenness Gibbs-Poston M1 (Gibbs & Poston, 1975, p. 471) differentiation
21 evenness Gibbs-Poston M3 (Gibbs & Poston, 1975, p. 472) differentiation
22 evenness Smith-Wilson E2 (Smith & Wilson, 1996, p. 71) evenness
23 evenness Smith-Wilson E3 (Smith & Wilson, 1996, p. 71) evenness
24 evenness Fisher alpha (Fisher et al., 1943, p. 55) diversity
25 other Wilcox MNDIF (Wilcox, 1973, p. 9)
26 other Kaiser b (Kaiser, 1968, p. 211) apportionment
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\* Smith-Wilson E1 is listed with the mean group, since it uses the average frequency. It could of
course also be placed in the evenness group.

This function is shown in this YouTube video and the measures are also described at PeterStatis-
tics.com

Usage

me_qv(data, measure = "vr", var1 = 2, var2 = 1)

Arguments

data list or dataframe

measure optional to indicate which method to use. Either "vr" (default), "modvr", "ranvr",
"avdev", "mndif", "varnc", "stdev", "hrel", "b", "m1", "m2", "m3", "m4", "m5",
"m6", "d1", "d2", "d3", "d4", "bpi", "hd", "he", "swe", "re", "sw1", "sw2",
"sw3", "hi", "si", "j", "b", "be", "bd", "fisher"

var1 optional additional value for some measures

var2 optional additional value for some measures

Details

The following measures can be determined:

• "modvr", Wilcox MODVR

• "ranvr", Wilcox RANVR

• "avdev", Wilcox AVDEV

• "mndif", Wilcox MNDIF

• "varnc", Wilcox VARNC (equal to Gibbs-Poston M2 and Smith-Wilson E1)

• "stdev", Wilcox STDEV

• "hrel", Wilcox HREL (equal to Pielou J)

• "m1", Gibbs-Poston M1

• "m2", Gibbs-Poston M2 (equal to Wilcox VARNC and Smith-Wilson E1)

• "m3", Gibbs-Poston M3

• "m4", Gibbs-Poston M4

• "m5", Gibbs-Poston M5

• "m6", Gibbs-Poston M6

• "b", Kaiser b

• "bd", Bulla D

• "be", Bulla E

• "bpi", Berger-Parker index

• "d1", "d2", "d3", "d4", Simpson D and variations

• "hd", Hill Diversity, requires a value for var1

• "he", Hill Eveness, requires a value for var1 and var2

• "hi", Heip Index

• "j", Pielou J (equal to Wilcox HREL)

https://youtu.be/9DDGMa0m4t8
https://peterstatistics.com/Terms/Measures/QualitativeVariation.html
https://peterstatistics.com/Terms/Measures/QualitativeVariation.html
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• "si", Sheldon Index

• "sw1", Smith & Wilson E1 (equal to Wilcox VARNC and Gibbs-Poston M2)

• "sw2", Smith-Wilson E2

• "sw3", Smith-Wilson E3

• "swe", Shannon-Weaver Entropy

• "re", Renyi entropy, requires a value for var1

• "vr", Freeman’s variation ratio

• fisher, Fisher alpha

MODE BASED MEASURES
Dispersion can be seen as how much variation there is, using as a norm the center. For nominal data
the measure of central tendancy is the mode, and therefor some measures of qualitative variation
use the mode as the starting point.

The frequency of the modal category is then useful. This is simply the maximum of the frequencies.

Freeman Variation Ratio ("vr")

Perhaps one of the most popular measures of qualitative variation uses the mode. The (Freeman)
Variation Ratio. It is simply the proportion of scores that do not belong to the modal category. In
formula notation (Freeman, 1965, p. 41):

Formula used from Freeman (1965, p. 41):

v = 1− Fmode

n

This variation ratio would become 0% if all cases fitted in the modal category, and all other cate-
gories don’t have any cases.

A 0 (0%) would mean that all cases were in the modal category. A 1 (100%) would indicate that no
cases were in the modal category. However, this seems impossible to ever occur, since the modal
category is the category with the highest frequency, which is impossible to be 0, unless there are no
cases at all.

Berger–Parker index ("bpi")

The variation ratio is the opposite of the Berger-Parker Index, which is simply the proportion of
scores that did fit in the modal category. In formula notation (Berger & Parker, 1970, p. 1345):

BPI =
Fmode

n

Berger and Parker refer to this as a dominance measure, to indicate how "dominant" the modal
category is.

A 1 (100%) would mean that all cases were in the modal category. A 0 (0%) would indicate that no
cases were in the modal category. However, this seems impossible to ever occur, since the modal
category is the category with the highest frequency, which is impossible to be 0, unless there are no
cases at all.

Wilcox MODVR ("modvr")

This looks at the difference of the frequency for each category with the modal frequency. This then
gets divided by n× (k − 1) to standardize the results to 0 to 1.

It is a modification of the Freeman Variation Ratio, hence the name MODVR. Wilcox noted that the
Freeman VR can never reach the maximum value of 1.
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The formula used is (Wilcox, 1973, p. 7):

MODVR =

∑k
i=1 Fmode − Fi

n× (k − 1)
=

k × Fmode − n

n× (k − 1)

Wilcox RANVR ("ranvr")

Short for ’range variation ratio’ this measure is very similar to Freeman’s VR. Instead of looking
simply at the mode, it looks at the range.

The formula used is (Wilcox, 1973, p. 8):

RANVR = 1− Fmode − Fmin

Fmode

MEAN BASED MEASURES
The following measures use the average count to determine the variation. i.e.

F̄ =

∑k
i=1 Fi

k
=

n

k

Wilcox AVDEV ("avdev")

This simply follows the mean absolute deviation analogue but then using frequencies. Again this is
then standardized.

The formula used is (Wilcox, 1973, p. 9):

AVDEV = 1−
∑k

i=1

∣∣Fi − F̄
∣∣

2× n
k × (k − 1)

= 1−
k ×

∑k
i=1

∣∣Fi − F̄
∣∣

2× n× (k − 1)

Gibbs-Poston M4 ("m4")

The formula used (Gibbs & Poston, 1975, p. 473):

M4 = 1−
∑k

i=1

∣∣Fi − F̄
∣∣

2× n

Gibbs-Poston M5 ("m5")

The problem with M4 is that it can never be 0, so to adjust for this M5 could be used but is compu-
tationally then more difficult.

The formula used (Gibbs & Poston, 1975, p. 474):

M5 = 1−
∑k

i=1

∣∣Fi − F̄
∣∣

2×
(
n− k + 1− F̄

)
Gibbs-Poston M6 ("m6")

The formula used (Gibbs & Poston, 1975, p. 474):

M6 = k ×

(
1−

∑k
i=1

∣∣Fi − F̄
∣∣

2× n

)
= k × M4

Wilcox VARNC ("varnc"), Gibbs-Poston M2 ("m2"), and Smith & Wilson E1 ("sw1")

This is similar as the variance for scale variables.
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The formula used is (Wilcox, 1973, p. 11):

VARNC = 1−
∑k

i=1

(
Fi − F̄

)2
n2×(k−1)

k

=
k ×

(
n2 −

∑k
i=1 F

2
i

)
n2 × (k − 1)

This is the same as Gibbs and Poston’s M2 ("m2"). Their formula looks different but has the same
result (Gibbs & Poston, 1975, p. 472)

M2 =
1−

∑k
i=1 p

2
i

1− 1
k

=
M1

1− 1
k

=
k

k − 1
× M1

It is also the same as Smith and Wilson’s first evenness measure ("sw1").

The formula used (Smith & Wilson, 1996, p. 71):

E1 =
1−Ds

1− 1
k

With Ds being Simpson’s D, but defined as:

Ds =

k∑
i=1

(
Fi

n

)2

Wilcox STDEV ("stdev")

As with the variance for scale variables, we can take the square root to obtain the standard deviation.

The formula used can be from the VARNC or the MNDIF (Wilcox, 1973, p. 14):

STDEV = 1−

√√√√ ∑k
i=1

(
Fi − F̄

)2(
n− F̄

)2
+ (k − 1) F̄ 2

= 1−

√∑k−1
i=1

∑k
j=i+1 (Fi − Fj)

2

n2 × (k − 1)

ENTROPY
Entropy is sometimes referred to as the expected value of the surprise. It tells on average how
surprised we might be about the outcome, and is also used as a measure with qualitative data.

I enjoyed the simple explanation on entropy from StatQuest, their video is available here.

It deals a lot with proportions rather than the counts themselves

Shannon-Weaver Entropy ("swe")

The formula used (Shannon & Weaver, 1949, p. 20):

Hsw = −
k∑

i=1

pi × ln (pi)

Rényi entropy ("re")

This is a generalisation for Shannon entropy.

The formula used is (Rényi, 1961, p. 549):

Hq =
1

1− q
× log2

(
k∑

i=1

pqi

)

https://www.youtube.com/watch?v=YtebGVx-Fxw
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Wilcox HREL ("hrel") and Pielou J ("j")

This uses Shannon’s entropy but divides it over the maximum possible uncertainty.

The formula used (Wilcox, 1973, p. 16):

HREL =
−
∑k

i=1 pi × log2pi
log2k

This is the same as Pielou J. ("j")

The formula used (Pielou, 1966, p. 141):

J =
Hsw

ln (k)

Sheldon Index ("si")

The formula used (Sheldon, 1969, p. 467):

E =
eHsw

k

Heip Index ("hi")

The formula used is (Heip, 1974, p. 555):

Eh =
eHsw − 1

k − 1

EVENNESS and DIVERSITY
Hill Diversity ("hd")

The formula used is (Hill, 1973, p. 428):

Na =


(∑k

i=1 p
a
i

) 1
1−a

if a ̸= 1

eHsw if = 1

Hill Eveness ("he")

The formula used is (Hill, 1973, p. 429):

Ea,b =
Na

Nb

Where Na and Nb are Hill’s diversity values for a and b.

Bulla E ("be")

Bulla’s evenness measure.

The formula used is (Bulla, 1994, pp. 168-169):

Eb =
O − 1

k − k−1
n

1− 1
k − k−1

n

With:

O =

k∑
i=1

min

(
pi,

1

k

)
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Bulla D ("bd")

Bulla’s Evenness measure converted to a diversity measure.

The formula used is (Bulla, 1994, p. 169):

Db = Eb × k

Where Eb is Bulla E value.

With:

O =

k∑
i=1

min

(
pi,

1

k

)
Simpson D ("d1", "d2", "d3", "d4" = Gibbs-Poston M1)

The formula used is based on Simpson (1949, p. 688):

D1 =

∑k
i=1 Fi × (Fi − 1)

n× (n− 1)

Another alternative is for a population:

D2 =

k∑
i=1

(
Fi

n

)2

Often the result is subtracted from 1 to reverse the scale.

D3 = 1−
∑k

i=1 Fi × (Fi − 1)

n× (n− 1)

and

D4 = 1−
k∑

i=1

(
Fi

n

)2

This last one is then the same as Gibb-Poston M1 (Gibbs & Poston, 1975, p. 471):

M1 = 1−
k∑

i=1

p2i

Gibbs-Poston M3 ("m3")

The formula used (Gibbs & Poston, 1975, p. 472):

M3 =
1−

∑k
i=1 p

2
i − pmin

1− 1
k − pmin

With pmin the lowest proportion

Smith & Wilson E2 ("sw2")

The formula used (Smith & Wilson, 1996, p. 71):

E2 =
ln (Ds)

ln (k)
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With Ds being Simpson’s D, but defined as:

Ds =

k∑
i=1

(
Fi

n

)2

Smith & Wilson E3 ("sw3")

The formula used (Smith & Wilson, 1996, p. 71):

E3 =
1

Ds × k

With Ds being Simpson’s D, but defined as:

Ds =

k∑
i=1

(
Fi

n

)2

Fisher alpha ("fisher")

The formula used (Fisher et al., 1943, p. 55):

k = α× ln
(
1 +

n

α

)
The function uses a simple binary search to find the value for α such that the result of the above
formula will produce the number of categories (k).

OTHER*

Wilcox MNDIF ("mndif")

Analog of the mean difference measure for scale variables.

The formula used is (Wilcox, 1973, p. 9):

MNDIF = 1−
∑k−1

i=1

∑k
j=i+1 |Fi − Fj |

n× (k − 1)

Kaiser b

The formula used (Kaiser, 1968, p. 211):

B = 1−

√√√√√1−

 k

√√√√ k∏
i=1

fi × k

n

2

Kaiser also provides rules-of-thumb for interpretation (see th_kaiser_b, for these).

Value

Dataframe with

value the value of the requested measure

measure description of the measure calculated

source source used for calculation
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Before, After and Alternatives

Before this an impression using a frequency table or a visualisation might be helpful: tab_frequency,
for a frequency table. vi_bar_simple, for Simple Bar Chart. vi_cleveland_dot_plot, for Cleve-
land Dot Plot. vi_dot_plot, for Dot Plot. vi_pareto_chart, for for Pareto Chart. vi_pie, for
Pie Chart.

After this you might want to perform a test: ts_pearson_gof, for Pearson Chi-Square Goodness-
of-Fit Test. ts_freeman_tukey_gof, for Freeman-Tukey Test of Goodness-of-Fit. ts_freeman_tukey_read,
for Freeman-Tukey-Read Test of Goodness-of-Fit. ts_g_gof, for G (Likelihood Ratio) Goodness-
of-Fit Test. ts_mod_log_likelihood_gof, for Mod-Log Likelihood Test of Goodness-of-Fit.
ts_multinomial_gof, for Multinomial Goodness-of-Fit Test. ts_neyman_gof, for Neyman Test
of Goodness-of-Fit. ts_powerdivergence_gof, for Power Divergence GoF Test.

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations
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Examples

#Example 1: dataframe
dataFile = "https://peterstatistics.com/Packages/ExampleData/GSS2012a.csv"
df1 <- read.csv(dataFile, sep=",", na.strings=c("", "NA"))
ex1 = df1['mar1']
me_qv(ex1)

#Example 2: a list
ex2 = c("MARRIED", "DIVORCED", "MARRIED", "SEPARATED", "DIVORCED", "NEVER MARRIED", "DIVORCED",
"DIVORCED", "NEVER MARRIED", "MARRIED", "MARRIED", "MARRIED", "SEPARATED", "DIVORCED",
"NEVER MARRIED", "NEVER MARRIED", "DIVORCED", "DIVORCED", "MARRIED")
me_qv(ex2, "swe")

me_variation Measures of Quantitative Variation

Description

Probably the most famous measure of dispersion is the standard deviation, but there are more. This
function provides a variety of measures and allows the creation of your own version.

This function is shown in this YouTube video and the measure is also described at PeterStatis-
tics.com

Usage

me_variation(
data,
levels = NULL,
measure = "std",
ddof = 1,
center = "mean",
azs = "square"

)

Arguments

data : list or dataframe

levels : dictionary, optional coding to use

measure : "std", "var", "mad", "madmed", "medad", "stddm", "cv", "cd", "own", optional
the measure to determine. Default is "std"

ddof : float, optional option to adjust the division in standard deviation or variance
with. Default is 1.

center : "mean", "median", "mode" or float, optional if measure is "own" the value to
use as center. Default is "mean"

azs : "square", "abs", optional if measure is "own" the way to avoid a zero sum.
Either by squaring or absolute value

https://youtu.be/hhqMByH1vIo
https://peterstatistics.com/Terms/Measures/QuantitativeVariation.html
https://peterstatistics.com/Terms/Measures/QuantitativeVariation.html
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Details

Standard Deviation (std)

The formula used is:

s =

√∑n
i=1 (xi − x̄)

2

n− d

Where d is the offset specified at ddof. By default this is 1, giving the sample standard deviation.

Variance (var)

The formula used is:

s2 =

∑n
i=1 (xi − x̄)

2

n− d

Where d is the offset specified at ddof. By default this is 1, giving the sample standard deviation.

Mean Absolute Deviation (mad)

The formula used is:

MAD =

∑n
i=1 |xi − x̄|

n

Mean Absolute Deviation from the Median (madmed)

The formula used is:

MAD =

∑n
i=1 |xi − x̃|

n

Where x̃ is the median

Median Absolute Deviation (medad)

The formula used is:
MAD = MED (|xi − x̃|)

Decile Standard Deviation
The formula used is (Siraj-Ud-Doulah, 2018, p. 310):

sdm =

√∑n
i=1 (xi −DM)

2

n− d

Where DM is the decile mean.

Coefficient of Variation (cv)

The formula used is (Pearson, 1896, p. 277):

CV =
s

x̄

Coefficient of Diversity (cd)

The formula used is (Siraj-Ud-Doulah, 2018, p. 310):

CD =
sdm
DM

Own it’s possible to create one’s own method. Decide on a specific center. Default options are the
mean, median and mode. Then on either to sum the squared deviations or the absolute differences.
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Value

A dataframe with:

• value, the value of the measure

• measure, description of the measure

Before, After and Alternatives

Before this you might want to create a binned frequency table or a visualisation: tab_frequency_bins,
to create a binned frequency table. vi_boxplot_single, for a Box (and Whisker) Plot. vi_histogram,
for a Histogram. vi_stem_and_leaf, for a Stem-and-Leaf Display.

After this you might want some other descriptive measures: me_mode_bin, for Mode for Binned
Data. me_mean, for different types of mean.

Or a perform a test: ts_student_t_os, for One-Sample Student t-Test. ts_trimmed_mean_os, for
One-Sample Trimmed (Yuen or Yuen-Welch) Mean Test. ts_z_os, for One-Sample Z Test.

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Pearson, K. (1896). Contributions to the mathematical theory of evolution. III. Regression, Hered-
ity, and Panmixia. Philosophical Transactions of the Royal Society of London. (A.), 1896, 253–318.

Siraj-Ud-Doulah, M. (2018). Alternative measures of standard deviation coefficient of variation and
standard error. International Journal of Statistics and Applications, 8(6), 309–315. https://doi.org/10.5923/j.statistics.20180806.04

Examples

file2 = 'https://peterstatistics.com/Packages/ExampleData/StudentStatistics.csv'
studentDf = read.csv(file2, sep=';', na.strings=c("", "NA"))
# Example 1: Numeric dataframe
ex1 = studentDf[['Gen_Age']]
me_variation(ex1)

# Example 2: Mean Absolute Deviation of a Numeric list
ex2 = c(1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 5)
me_variation(ex2, measure='mad')

ph_column_proportion Post-Hoc Column Proportion Test

Description

Post-Hoc Column Proportion Test

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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Usage

ph_column_proportion(
field1,
field2,
categories1 = NULL,
categories2 = NULL,
seMethod = "spss"

)

Arguments

field1 list or dataframe with the first categorical field

field2 list or dataframe with the second categorical field

categories1 optional list with order and/or selection for categories of field1

categories2 optional list with order and/or selection for categories of field2

seMethod optional methdod for standard error. Either "spss" (default) or "marascuilo".

ph_conover_iman Post-Hoc Conover-Iman Test

Description

This can be used as a post-hoc test for a Kruskal-Wallis test (see ts_kruskal_wallis()).

The test compares each possible pair of categories from the catField and their mean rank. The null
hypothesis is that these are then equal. A simple Bonferroni adjustment is also made for the multiple
testing.

Other post-hoc tests that could be considered are Dunn, Nemenyi, Steel-Dwass, a pairwise Mann-
Whitney U, or pairwise Mood-Median.

Usage

ph_conover_iman(catField, ordField, categories = NULL, levels = NULL)

Arguments

catField vector with categories

ordField vector with the scores

categories vector, optional. the categories to use from catField

levels vector, optional. the levels or order used in ordField.

Details

The formula used is (Conover & Iman, 1979, p. 11):

t1,2 =
r̄1 − r̄2√

S2 × n−1−T
n−k ×

(
1
n1

+ 1
n2

)
df = n− k
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sig. = 1− T (|t1,2| , df)

With:

S2 =

∑k
j=1

∑nj

i=1 r
2
i,j −

n×(n+1)2

4

n− 1

T =

∑k
i=1

R2
i

ni
− n×(n+1)2

4

S2

Ri =

ni∑
j=1

ri,j

Note that S2, T, k, n are all based on all scores, including those not in the selected pair.

The formula can also be found in Conover (1980, pp. 230-231).

Symbols used

• k, the number of categories

• ni, the number of scores in category i

• ri,j , the rank of the j-th score in category i using all original scores (incl. those not in the
comparison).

• Ri, the sum of the ranks in category i

• r̄i, the average of the ranks in category i, using all original scores (incl. those not in the
comparison).

• T (. . . ), the cumulative distribution function of the Student t distribution.

Value

A dataframe with:

cat. 1 one of the two categories being compared

cat. 2 second of the two categories being compared

n1 number of cat. 1. cases in comparison

n2 number of cat. 2 cases in comparison

mean rank 1 mean rank of cases in cat. 1, based on all cases (incl. categories not in compari-
son)

mean rank 2 mean rank of cases in cat. 2, based on all cases (incl. categories not in compari-
son)

statistic the t-value of the test

df the degrees of freedom

p-value the p-value (significance)

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Conover, W. J. (1980). Practical nonparametric statistics (2nd ed.). Wiley.

Conover, W. J., & Iman, R. L. (1979). On multiple-comparisons procedures (LA-7677-MS; pp.
1–14). Los Alamos Scientific Laboratory.

https://PeterStatistics.com
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ph_dunn Post-Hoc Dunn Test

Description

This can be used as a post-hoc test for a Kruskal-Wallis test (see ts_kruskal_wallis()).

The test compares each possible pair of categories from the catField and their mean rank. The null
hypothesis is that these are then equal. A simple Bonferroni adjustment is also made for the multiple
testing.

Dunn (1964) describes two procedures. The first is his own, the second is one from Steel (1960)
for comparison. The difference is that in Dunn’s procedure the mean rank of each category is based
on the scores of all categories, including those that are not being compared, while Steel’s procedure
re-calculates the mean rank for each category using only the scores from the two categories being
compared. This later one wouls make it very similar to a pairwise Mann-Whitney U test (see
ph_mann_whitney()).

Other post-hoc tests that could be considered are Nemenyi, Steel-Dwass, Conover, a pairwise Mann-
Whitney U, or pairwise Mood-Median.

Usage

ph_dunn(catField, ordField, categories = NULL, levels = NULL)

Arguments

catField vector with categories

ordField vector with the scores

categories vector, optional. the categories to use from catField

levels vector, optional. the levels or order used in ordField.

Details

The formula used (Dunn, 1964, p. 249):

z1,2 =
r̄1 − r̄2√

σ2
m

sig. = 2× (1− Φ (z))

With:

σ2
m =

(
n× (n+ 1)

12
− T

12× (n− 1)

)
×
(

1

n1
+

1

n2

)

T =

k∑
j=1

t3j − tj

r̄i =
Ri

ni

Ri =

ni∑
j=1

ri,j

Symbols used



158 ph_dunn_q

• k, the number of categories

• tj , the frequency of the j-th unique rank.

• ni, the number of scores in category i

• ri,j , the rank of the j-th score in category i using all original scores (incl. those not in the
comparison).

• Ri, the sum of the ranks in category i

• r̄i, the average of the ranks in category i, using all original scores (incl. those not in the
comparison).

• Φ (. . . ), the cumulative distribution function of the standard normal distribution.

Value

A dataframe with:

cat. 1 one of the two categories being compared

cat. 2 second of the two categories being compared

n1 number of cat. 1. cases in comparison

n2 number of cat. 2 cases in comparison

mean rank 1 mean rank of cases in cat. 1, based on all cases (incl. categories not in compari-
son)

mean rank 2 mean rank of cases in cat. 2, based on all cases (incl. categories not in compari-
son)

statistic the z-value of the test

p-value the p-value (significance)

adj. p-value the Bonferroni adjusted p-value

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Dunn, O. J. (1964). Multiple comparisons using rank sums. Technometrics, 6(3), 241–252. doi:10.1080/00401706.1964.10490181

Steel, R. G. D. (1960). A rank sum test for comparing all pairs of treatments. Technometrics, 2(2),
197–207. doi:10.1080/00401706.1960.10489894

ph_dunn_q Post-Hoc Dunn Test (for Cochran Q test)

Description

An adaptation from IBM SPSS on the Dunn test, so it can be used as a post-hoc test for a Cochran
Q test.

Usage

ph_dunn_q(data, success = NULL)

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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Arguments

data dataframe with the binary scores

success indicator for what is considered a success (default is first value found)

Details

The formula used (IBM, 2021, p. 814):

z1,2 =
d̄1,2
SE

sig. = 2× (1− Φ (|z1,2|))

With:

d̄1,2 =
ns1 − ns2

n

SE =

√
2×

k ×
∑n

i=1 Ri −
∑n

i=1 R
2
i

n2 × k × (k − 1)

Ri =

k∑
j=1

si,j

nsj =

n∑
i=1

si,j

si,j =

{
1 if xi,j = success
0 if xi,j ̸= success

IBM SPSS mentions this is an adaptation from Dunn (1964), originally for the Kruskal-Wallis test.

The Bonferroni adjustment is done using:

sig.adj = min (sig.× nc, 1)

nc =
k × (k − 1)

2

Symbols used

• xi,j , the score in row i and column j

• k, the number of variables

• n, the total number of cases used

• nsj , the total number of successes in column j

• Ri, the total number of successes in row i

• Φ (. . . ), the standard normal cumulative distribution function.

• nc, the number of comparisons (pairs)
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Value

A dataframe with:

category 1 label of first variable in comparison

category 2 label of second variable in comparison

n suc. 1 number of successes in first variable in comparison

n suc. 2* number of successes in second variable in comparison

statistic test statistic

z-value standardized test statistic (z-value)

p-value p-value of the z-value

adj. p-value Bonferroni corrected p-value

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Dunn, O. J. (1964). Multiple comparisons using rank sums. Technometrics, 6(3), 241–252. doi:10.1080/00401706.1964.10490181

IBM. (2021). IBM SPSS Statistics Algorithms. IBM.

ph_friedman Post-Hoc Tests for a Friedman Test

Description

A post-hoc test after a Friedman test can be used to determine which variables differ significantly.

This function provides three options: Dunn, Conover, and Nemenyi.

Usage

ph_friedman(data, levels = NULL, method = "dunn", ties = TRUE)

Arguments

data dataframe. A column for each variable

levels vector, optional. Indication of what the levels are in order

method string, optional. Post-Hoc method to use. Either "dunn" (default), "conover",
"nemenyi"

ties boolean, optional. Apply a ties correction. Default is True

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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Details

Conover
Bartz-Beielstein et al. (2010, p. 319) attributes this to Conover (1999) (but also seen sites refering
to Conover (1980), just different editions of the book) and uses as a formula:

t1,2 =
|R1 −R2|

SE

SE =

√√√√2× n×
(
1− χ2

F

n×(k−1)

)
×
(∑n

i=1

∑k
j=1 r

2
i,j −

n×k×(k+1)2

4

)
(n− 1)× (k − 1)

With:

Rj =

n∑
i=1

ri,j

In the original source it mentions 2 × k in SE instead of 2 × n, this was indeed an error (pers.
comm. with Conover).

Gnambs (n.d.) and BrightStat (n.d.) show a different formula, that gives the same result, and is the
one the function uses:

SE =

√√√√2×
(∑n

i=1

∑k
j=1 r

2
i,j −

∑k
j=1 R

2
j

)
(n− 1)× (k − 1)

The significance is then determined using:

sig. = 2× (1− T (|ti,2| , df))

Note that in the calculation SE is determined using all ranks, including those not in the comparison.

Nemenyi
Pohlert (2016, p. 15) shows the formula from Nemenyi (1963) as well as in Demšar (2006, pp.
11-12):

q1,2 =
|R1 −R2|√

k×(k+1)
6×n

×
√
2

df = n− k

This follows then a studentized range distribution with:

sig. = 1−Q (q1,2, k, df)

Dunn
Benavoli et. al (2016, pp. 2-3) and IBM SPSS (2021, p. 814):

z1,2 =
|R1 −R2|

SE

SE =

√
k × (k + 1)

6× n

This follows a standard normal distribution:

sig. = 2× (1− Φ (|zi,2|))
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Bonferroni adjustment
The Bonferroni adjustment is done using:

sig.adj = min (sig.× nc, 1)

nc =
k × (k − 1)

2

Symbols Used

• n, the number of cases

• k, the number of variables

• ri,j , the rank of case i, in variable j. The ranks are determined for each case.

• Φ (. . . ), the standard normal cumulative distribution function.

• Q (. . . ), the studentized range distribution cumulative distribution function.

• T (. . . ), the Student t cumulative distribution function.

• nc, the number of comparisons (pairs)

Value

res : dataframe with the following columns

field 1 label of first column in pair

field 2 label of second column in pair

n sample size

statistic test statistic used

df degrees of freedom (if applicable)

p-value the p-value (significance)

adj. p-value Bonferroni adjusted p-value

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Benavoli, A., Corani, G., & Mangili, F. (2016). Should we really use post-hoc tests based on mean-
ranks? Journal of Machine Learning Research, 17, 1–10. doi:10.48550/ARXIV.1505.02288

BrightStat. (n.d.). Friedman test. BrightStat. Retrieved November 5, 2023, from https://secure.brightstat.com/index.php?p=c&d=1&c=2&i=9

Conover, W. J. (1980). Practical nonparametric statistics (2nd ed.). Wiley.

Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. The Journal of
Machine Learning Research, 7, 1–30. doi:10.5555/1248547.1248548

Gnambs, T. (n.d.). SPSS Friedman. http://timo.gnambs.at/sites/default/files/spss_friedmanph.sps

IBM. (2021). IBM SPSS Statistics Algorithms. IBM.

Nemenyi, P. (1963). Distribution-free Multiple Comparisons. Princeton University.

Pohlert, T. (2016). The pairwise multiple comparison of mean ranks package (PMCMR). https://cran.r-
hub.io/web/packages/PMCMR/vignettes/PMCMR.pdf
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ph_mcnemar_co Post-Hoc McNemar Test - Collapsed

Description

After a (McNemar-)Bowker test a post-hoc test can potentially locate where the changes occured.
This can be done use a McNemar test, which is the Bowker test but for 2x2 tables.

There are two variations, one is to simply compare each possible pair of categories (pairwise com-
parison), or compare each category with all other categories (collapsed comparison). This function
is for the collapsed version, see ph_mcnemar_pw() for the pairwise version.

Instead of using the McNemar test it is also possible to use the binomial test, which will be used if
exact is set to True.

Usage

ph_mcnemar_co(field1, field2, categories = NULL, exact = FALSE, cc = FALSE)

Arguments

field1 vector, the first categorical field

field2 vector, the first categorical field

categories vector, optional, order and/or selection for categories of field1 and field2

exact boolean, optional, use of exact binomial distribution (default is False)

cc boolean, optional, use of a continuity correction (default is False)

Details

The formula used is (McNemar, 1947, p. 156):

χ2
M =

(F1,2 − F2,1)
2

F1,2 + F2,1

df = 1

sig. = 1− χ2
(
χ2
M , df

)
If a continuity correction is applied the formula changes to:

χ2
M∗ =

(|F1,2 − F2,1| − 1)
2

F1,2 + F2,1

The formula used for the binomial test is:

sig. = 2× Bin (F1,2 + F2,1,min (F1,2, F2,1) , 0.5)

The formula used for the binomial test with a mid-p correction:

sig. = 2× Bin (F1,2 + F2,1,min (F1,2, F2,1) , 0.5)− bin (F1,2 + F2,1,min (F1,2, F2,1) , 0.5)

The number of pairwise tests ncomp ) is:

ncomp =
k × (k − 1)

2
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The adjusted p-value is then determined using a Bonferroni correction:

sig.adj =

{
sig.× ncomp if sig.× ncomp ≤= 1

1 if sig.× ncomp > 1

Symbols used

• F1,2, the observed count of cases that scored category 1 on the first variable, and another
category on the second.

• F2,1, the observed count of cases that scored another category on the first variable, and cate-
gory 1 on the second.

• χ2 (. . . ), the cumulative distribution function for the chi-square distribution.

• Bin (. . . ), the cumulative distribution function for the binomial distribution.

• bin (. . . ), the probability mass function for the binomial distribution.

Value

Dataframe with:

category the specific category compared to all other categories

n the sample size

statistic the chi-squared value (if applicable)

df the degrees of freedom used in the test (if applicable)

p-value the significance (p-value)

adj. p-value the Bonferroni adjusted p-value

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

McNemar, Q. (1947). Note on the sampling error of the difference between correlated proportions
or percentages. Psychometrika, 12(2), 153–157. doi:10.1007/BF02295996

ph_mcnemar_pw Post-Hoc McNemar Test - Pairwise

Description

After a (McNemar-)Bowker test a post-hoc test can potentially locate where the changes occured.
This can be done use a McNemar test, which is the Bowker test but for 2x2 tables.

There are two variations, one is to simply compare each possible pair of categories (pairwise com-
parison), or compare each category with all other categories (collapsed comparison). This function
is for the pairwise version, see ph_mcnemar_co() for the collapsed version.

Instead of using the McNemar test it is also possible to use the binomial test, which will be used if
exact is set to True.

https://PeterStatistics.com
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Usage

ph_mcnemar_pw(field1, field2, categories = NULL, exact = FALSE, cc = FALSE)

Arguments

field1 vector, the first categorical field

field2 vector, the first categorical field

categories vector, optional, order and/or selection for categories of field1 and field2

exact boolean, optional, use of exact binomial distribution (default is False)

cc boolean, optional, use of a continuity correction (default is False)

Details

The formula used is (McNemar, 1947, p. 156):

χ2
M =

(F1,2 − F2,1)
2

F1,2 + F2,1

df = 1

sig. = 1− χ2
(
χ2
M , df

)
If a continuity correction is applied the formula changes to:

χ2
M∗ =

(|F1,2 − F2,1| − 1)
2

F1,2 + F2,1

The formula used for the binomial test is:

sig. = 2× Bin (F1,2 + F2,1,min (F1,2, F2,1) , 0.5)

The formula used for the binomial test with a mid-p correction:

sig. = 2× Bin (F1,2 + F2,1,min (F1,2, F2,1) , 0.5)− bin (F1,2 + F2,1,min (F1,2, F2,1) , 0.5)

The number of pairwise tests ncomp ) is:

ncomp =
k × (k − 1)

2

The adjusted p-value is then determined using a Bonferroni correction:

sig.adj =

{
sig.× ncomp if sig.× ncomp ≤= 1

1 if sig.× ncomp > 1

Symbols used

• F1,2, the observed count of cases that scored category 1 on the first variable, and category 2
on the second.

• F2,1, the observed count of cases that scored category 2 on the first variable, and category 1
on the second.

• χ2 (. . . ), the cumulative distribution function for the chi-square distribution.

• Bin (. . . ), the cumulative distribution function for the binomial distribution.

• bin (. . . ), the probability mass function for the binomial distribution.
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Value

Dataframe with:

field1 the first category compared to the second

field2 the second category compared to the first

n the sample size

statistic the chi-squared value (if applicable)

df the degrees of freedom used in the test (if applicable)

p-value the significance (p-value)

adj. p-value the Bonferroni adjusted p-value

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

McNemar, Q. (1947). Note on the sampling error of the difference between correlated proportions
or percentages. Psychometrika, 12(2), 153–157. doi:10.1007/BF02295996

ph_nemenyi Post-Hoc Nemenyi Test

Description

This can be used as a post-hoc test for a Kruskal-Wallis test (see ts_kruskal_wallis()).

The test compares each possible pair of categories from the catField and their mean rank. The null
hypothesis is that these are then equal.

Pohlert (2016) mentions the exact version should only be used if there are no ties, and suggest to use
a chi-square alternative in case of ties. This is referred to by Zaiontz (n.d.-b) as the Schaich-Hamerle
test (1984).

The ties correction is taken from Pohlert (2016).

Other post-hoc tests that could be considered are Dunn, Steel-Dwass, Conover, a pairwise Mann-
Whitney U, or pairwise Mood-Median.

Usage

ph_nemenyi(
catField,
ordField,
categories = NULL,
levels = NULL,
version = "auto"

)

https://PeterStatistics.com
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Arguments

catField vector with categories

ordField vector with the scores

categories vector, optional. the categories to use from catField

levels vector, optional. the levels or order used in ordField.

version string, optional. version of the test to use. Either "auto" (default), "exact", "sh",
"sh-ties".

Details

The formula used (Pohlert, 2016, p. 3):

q1,2 =
r̄1 − r̄2√

n×(n+1)
24 ×

(
1
n1

+ 1
n2

)
sig. = 1−Q (q1,2, k, df = ∞)

A chi-square distribution can also be used. Zaiontz (n.d.) and BrightStat (n.d.) refer to this as the
Schaich-Hamerle test.

The formula used then changes to (Sachs, 1982, p. 549):

χ2
1,2 =

(r̄1 − r̄2)
2

n×(n+1)
12 ×

(
1
n1

+ 1
n2

)
df = k − 1

sig. = 1− χ2
(
χ2
1,2, df

)
A ties correction found in Pohlert (2016, p. 3) adjusts this to:

χ2
1,2 =

(r̄1 − r̄2)
2

(1− T )× n×(n+1)
12 ×

(
1
n1

+ 1
n2

)
T =

∑
t3i − ti

n3 − n

The original formula is most likely from Nemenyi (1963) and the Schaich and Hamerle (1984).

Symbols used

• k, the number of categories

• tj , the frequency of the j-th unique rank.

• n, the total sample size, of all scores, incl. those not in the comparison

• ni, the number of scores in category i

• ri,j , the rank of the j-th score in category i, using all original scores (incl. those not in the
comparison).

• r̄i, the average of the ranks in category i, using all original scores (incl. those not in the
comparison).

• Q (. . . ), the cumulative distribution function of the standardized range distribution.

• χ2 (. . . ), the cumulative distribution function of the chi-square distribution.
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Value

A dataframe with:

cat. 1 one of the two categories being compared
cat. 2 second of the two categories being compared
n1 number of cat. 1. cases in comparison
n2 number of cat. 2 cases in comparison
mean rank 1 mean rank of cases in cat. 1, based on all cases (incl. categories not in compari-

son)
mean rank 2 mean rank of cases in cat. 2, based on all cases (incl. categories not in compari-

son)
se the standard error used
statistic the z-value of the test
p-value the p-value (significance)

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

BrightStat. (n.d.). Kruskal-Wallis test. BrightStat. Retrieved October 25, 2023, from https://secure.brightstat.com/index.php?p=c&d=1&c=2&i=7

Nemenyi, P. (1963). Distribution-free Multiple Comparisons. Princeton University.

Pohlert, T. (2016). The pairwise multiple comparison of mean ranks package (PMCMR). https://cran.r-
hub.io/web/packages/PMCMR/vignettes/PMCMR.pdf

Sachs, L. (1982). Applied statistics: A handbook of techniques. Springer-Verlag.

Schaich, E., & Hamerle, A. (1984). Verteilungsfreie statistische Prüfverfahren. Springer. doi:10.1007/978-
3-642-70032-3

Zaiontz, C. (n.d.). Schaich-Hamerle Test after KW. Real Statistics Using Excel. Retrieved Oc-
tober 25, 2023, from https://real-statistics.com/one-way-analysis-of-variance-anova/kruskal-wallis-
test/schaich-hamerle-test/

ph_pairwise_bin Pairwise Binary Test for Post-Hoc Analysis

Description

This function will perform a one-sample binary test for each possible pair in the data. This could
either be a binomial, Wald or score test.

The unadjusted p-values and Bonferroni adjusted p-values are both determined.

Usage

ph_pairwise_bin(
data,
test = "binomial",
expCount = NULL,
mtc = "bonferroni",
...

)

https://PeterStatistics.com
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Arguments

data dataframe with scores

test "binomial", "score", "wald", optional test to use for each pair

expCount optional dataframe with categories and expected counts

mtc optional string. Any of the methods available in p_adjust() to correct for multiple
tests

... optional additional arguments for the specific test that are passed along.

Value

a dataframe with:

category 1 the label of the first category

category 2 the label of the second category

n1 the sample size of the first category

n2 the sample size of the second category

n pair the sample size of of the pair

obs. prop. 1 the proportion in the sample of the first category

exp. prop. 1 the expected proportion for the first category

statistic the test statistic

p-value the unadjusted significance

adj. p-value the adjusted significance

test description of the test used

Before, After and Alternatives

Before this an omnibus test might be helpful: ts_freeman_tukey_gof, for Freeman-Tukey Test
of Goodness-of-Fit. ts_freeman_tukey_read, for Freeman-Tukey-Read Test of Goodness-of-
Fit. ts_g_gof, for G (Likelihood Ratio) Goodness-of-Fit Test. ts_mod_log_likelihood_gof,
for Mod-Log Likelihood Test of Goodness-of-Fit. ts_neyman_gof, for Neyman Test of Goodness-
of-Fit. ts_pearson_gof, for Pearson Test of Goodness-of-Fit. ts_powerdivergence_gof, for
Power Divergence GoF Test.

After this you might want to add an effect size measure: es_post_hoc_gof for various effect sizes.

Alternative post-hoc tests: ph_pairwise_gof for Pairwise Goodness-of-Fit Tests. ph_residual_gof_bin
for Residuals Tests using Binary Tests ph_residual_gof_gof for Residuals Using Goodness-of-Fit
Tests

The binary test that is performed on each pair: ts_binomial_os for One-Sample Binomial Test.
ts_score_os for One-Sample Score Test. ts_wald_os for One-Sample Wald Test.

More info on the adjustment for multiple testing: p_adjust, various adjustment methods.

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

https://PeterStatistics.com
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Examples

# Examples: get data
dataFile = "https://peterstatistics.com/Packages/ExampleData/GSS2012a.csv"
gssDf <- read.csv(dataFile, sep=",", na.strings=c("", "NA"))
ex1 = gssDf['mar1']

#Example 1 using default settings (one-sample binomial tests with equal-distance method)
ph_pairwise_bin(ex1)

#Example 2 using a score test with Yates correction:
ph_pairwise_bin(ex1, test="score", mtc='holm', cc='yates')

ph_pairwise_gof Pairwise Goodness-of-Fit Tests for Post-Hoc Analysis

Description

This function will perform a goodness-of-fit test for each possible pair in the data. This could be
any of the goodness-of-fit tests, e.g. a Pearson chi-square.

The unadjusted p-values and Bonferroni adjusted p-values are both determined.

Usage

ph_pairwise_gof(
data,
test = "pearson",
expCount = NULL,
mtc = "bonferroni",
...

)

Arguments

data dataframe with scores

test "pearson", "freeman-tukey", "freeman-tukey-read", "g", "mod-log-g", "neyman",
"powerdivergence", "multinomial", optional test to use for each pair

expCount optional dataframe with categories and expected counts

mtc optional string. Any of the methods available in p_adjust() to correct for multiple
tests

... optional additional arguments for the specific test that are passed along.

Value

a dataframe with:

category 1 the label of the first category

category 2 the label of the second category

n1 the sample size of the first category

n2 the sample size of the second category
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obs. prop. 1 the observed proportion of category 1

exp. prop. 1 the expected proportion of category 1

statistic the chi-square test statistic

df the degrees of freedom

p-value the unadjusted significance

adj. p-value the adjusted significance

minExp the minimum expected count

propBelow5 the proportion of cells with an expected count below 5

test description of the test used

In case of a multinomial test, the same columns except there are no minExp and propBelow5
columns and:

p obs instead of statistic, showing the probability of the observed sample table

n combs. instead of df, showing the number of possible tables

Before, After and Alternatives

Before this an omnibus test might be helpful, these are also the tests used on each pair: ts_freeman_tukey_gof,
for Freeman-Tukey Test of Goodness-of-Fit. ts_freeman_tukey_read, for Freeman-Tukey-Read
Test of Goodness-of-Fit. ts_g_gof, for G (Likelihood Ratio) Goodness-of-Fit Test. ts_mod_log_likelihood_gof,
for Mod-Log Likelihood Test of Goodness-of-Fit. ts_neyman_gof, for Neyman Test of Goodness-
of-Fit. ts_pearson_gof, for Pearson Test of Goodness-of-Fit. ts_powerdivergence_gof, for
Power Divergence GoF Test.

After this you might want to add an effect size measure: es_post_hoc_gof for various effect sizes.

Alternative post-hoc tests: ph_pairwise_bin for Pairwise Binary Tests. ph_residual_gof_bin
for Residuals Tests using Binary Tests ph_residual_gof_gof for Residuals Using Goodness-of-
Fit Tests

More info on the adjustment for multiple testing: p_adjust, various adjustment methods.

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

Examples

dataFile = "https://peterstatistics.com/Packages/ExampleData/GSS2012a.csv"
gssDf <- read.csv(dataFile, sep=",", na.strings=c("", "NA"))
ex1 = gssDf['mar1']

# Example 1 using default settings
ph_pairwise_gof(ex1)

#Example 2 using a G test with Pearson correction:
ph_pairwise_gof(ex1, test="g", mtc='holm', cc='pearson')
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ph_pairwise_is Post-Hoc Pairwise Independent Samples Test

Description

This function can perform various pairwise independent samples tests, for use after a one-way
ANOVA, to determine which categories significantly differ from each other.

A simple Bonferroni correction is also applied.

The independent samples tests that can be used are:

• Student t, see ts_student_t_is() for details. An alternative version for this is available by using
the ph_pairwise_t() function.

• Welch t, see ts_welch_t_is() for details

• Trimmed Mean / Yuen, see ts_trimmed_mean_is() for details

• Z, see ts_z_is() for details

Usage

ph_pairwise_is(
nomField,
scaleField,
categories = NULL,
isTest = "student",
trimProp = 0.1

)

Arguments

nomField the groups variable

scaleField the numeric scores variable

categories vector, optional. the categories to use from catField

isTest string, optional. The independent samples test to use. Either "student" (default),
"welch", "trimmed", "yuen", "z"

trimProp float, optional. The trim proportion to use, if applicable. Default is 0.1.

Details

The Bonferroni adjustment is simply:

padj = min (p× ncomp, 1)

ncomp =
k × (k − 1)

2

Symbols used:

• ncomp, number of comparisons (pairs)

• k, number of categories
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Value

A dataframe with:

category 1 the first category in the pair

category 2 the second category in the pair

n1 sample size of first category

n2 sample size of second category

mean 1 arithmetic mean of scores in first category

mean 2 arithmetic mean of scores in second category

sample diff. difference between the two arithmetic means

hyp diff. the hypothesized difference

statistic the test-statistic

df the degrees of freedom

p-value the unadjusted p-value (significance)

adj. p-value the Bonferroni adjusted p-values

test description of test used

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

ph_pairwise_iso Post-Hoc Pairwise Independent Samples Test for Ordinal

Description

The Mann-Whitney U, Mood Median and Fligner-Policello test are designed for two categories and
an ordinal variable. These can therefor be used as a post-hoc test for a Kruskal-Wallis test (see
ts_kruskal_wallis()). The test compares each possible pair of categories from the catField and their
mean rank. The null hypothesis is that these are then equal. A simple Bonferroni adjustment is also
made for the multiple testing. Other post-hoc tests that could be considered are Dunn, Nemenyi,
Steel-Dwass, Conover-Iman.

Usage

ph_pairwise_iso(
catField,
ordField,
categories = NULL,
levels = NULL,
iso_test = "mann-whitney",
...

)

https://PeterStatistics.com
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Arguments

catField vector with categories

ordField vector with the scores

categories vector, optional. the categories to use from catField

levels vector, optional. the levels or order used in ordField.

iso_test string, optional. The test of independence to use. Options are "mann-whitney"
(default), "mood", "fligner-policello

... other, optional. other arguments to pass on for the specific test used.

Details

This function selects each possible pair of categories and then simply runs the requested test, using
only those two categories.

See ts_mann_whitney(), ts_mood_median() and/or ts_fligner_policello() for details of the calcula-
tions.

The Bonferroni adjustment is simply:

padj = min (p× ncomp, 1)

ncomp =
k × (k − 1)

2

Symbols used:

• ncomp, number of comparisons (pairs)

• k, number of categories

Value

A dataframe with:

category 1 one of the two categories being compared

category 2 second of the two categories being compared

statistic the test statistic

df he degrees of freedom, if applicable

p-value the p-value (significance)

adj. p-value the Bonferroni adjusted p-value

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations
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ph_pairwise_ps Post-Hoc Pairwise Paired Samples Tests

Description

This function simply performs pairwise paired tests: Sign, Wilcoxon and Trinomial. It then adds a
Bonferroni correction.

These could be used with a Friedman test, but other post-hoc tests are also available in the ph_friedman()
function (a Dunn, Nemenyi and Conover test).

Usage

ph_pairwise_ps(
data,
levels = NULL,
test = "sign",
appr = "wilcoxon",
noDiff = "wilcoxon",
ties = TRUE,
cc = FALSE

)

Arguments

data dataframe. A column for each variable

levels vector, optional. Indication of what the levels are in order

test string, optional. Test to use in pairwise comparisons. Either "sign" (details),
"wilcoxon", "trinomial".

appr string, optional. Option for sign and wilcoxon test. Default for wilcoxon is
wilcoxon, for sign is appr. Either "exact", "appr", "wilcoxon", "imanz", "imant"

noDiff string, optional. Method to deal with scores equal to mu. Either "wilcoxon"
(default), "pratt", "zsplit". Only applies if test="wilcoxon"

ties boolean, optional. Apply a ties correction. Default is True

cc boolean, optional. use a continuity correction. Default is False. Only applies if
test="wilcoxon"

Details

This function creates each possible pair of the variables (columns) and then uses the requested
paired samples test.

See for the calculations:

• Sign test -> ts_sign_ps()

• Wilcoxon signed rank test -> ts_wilcoxon_ps()

• Trinomial test -> ts_trinomial_ps()
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The Bonferroni adjustment is done using:

sig.adj = min (sig.× nc, 1)

nc =
k × (k − 1)

2

Where nc is the number of comparisons (pairs)

Value

res, a dataframe with the test results and:

var 1 the name of the first variable in the pair

var 2 the name of the second variable in the pair

adj. p-value the Bonferroni adjusted p-value

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

ph_pairwise_t Post-Hoc Pairwise Student T

Description

This function performs pairwise independent samples Student t tests, for use after a one-way
ANOVA, to determine which categories significantly differ from each other.

It differs slightly in the calculation of the standard error, than the version used by using ph_pairwise_is(nomField,
scaleField, isTest = "student"). This version appears to be producing the same results as SPSS
shows, when using a Bonferroni correction. SPSS refers to Winer (1962) for their procedures.

A simple Bonferroni correction is also applied.

Usage

ph_pairwise_t(nomField, scaleField, categories = NULL)

Arguments

nomField the groups variable

scaleField the numeric scores variable

categories vector, optional. the categories to use from catField
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Details

The formula used:
t1,2 =

x̄1 − x̄2√
MSw ×

(
1
n1

+ 1
n2

)
dfw = n− k

sig. = 2× (1− T (|t1,2| , dfw))

With:
MSw =

SSw

dfw

SSw =

k∑
j=1

nj∑
i=1

(xi,j − x̄j)
2

x̄j =

∑nj

i=1 xi,j

nj

Symbols used

• xi,j , the i-th score in category j

• n, the total sample size

• nj , the number of scores in category j

• k, the number of categories

• x̄j , the mean of the scores in category j

• MSw, the mean square within

• SSw, the sum of squares of within (sum of squared deviation of the mean)

• dfw, the degrees of freedom of within

The Bonferroni adjustment is simply:

padj = min (p× ncomp, 1)

ncomp =
k × (k − 1)

2

Symbols used:

• ncomp, number of comparisons (pairs)

• k, number of categories

Value

A dataframe with:

category 1 the first category in the pair

category 2 the second category in the pair

n1 sample size of first category

n2 sample size of second category

mean 1 arithmetic mean of scores in first category

mean 2 arithmetic mean of scores in second category
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sample diff. difference between the two arithmetic means

hyp diff. the hypothesized difference

statistic the test-statistic

df the degrees of freedom

p-value the unadjusted p-value (significance)

adj. p-value the Bonferroni adjusted p-values

test description of test used

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Winer, B. J. (1962). Statistical principles in experimental design. McGraw Hill.

ph_residual Post-Hoc Residual Test

Description

Post-Hoc Residual Test

Usage

ph_residual(
field1,
field2,
categories1 = NULL,
categories2 = NULL,
residual = "adjusted"

)

Arguments

field1 list or dataframe with the first categorical field

field2 list or dataframe with the second categorical field

categories1 optional list with order and/or selection for categories of field1

categories2 optional list with order and/or selection for categories of field2

residual optional methdod for residual to test. Either "adjusted" (default) or "standard-
ized".
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ph_residual_gof_bin Post-Hoc Residuals Using Binary Tests for GoF

Description

This function will perform a residuals post-hoc test for each of the categories in a nominal field.
This could either be a z-test using the standardized residuals, the adjusted residuals, or any of the
one-sample binary tests.

The unadjusted p-values and Bonferroni adjusted p-values are both determined.

Usage

ph_residual_gof_bin(
data,
test = "std-residual",
expCount = NULL,
mtc = "bonferroni",
...

)

Arguments

data dataframe with scores

test "adj-residual", "std-residual", "binomial", "wald", "score" optional test to use

expCount optional dataframe with categories and expected counts

mtc optional string. Any of the methods available in p_adjust() to correct for multiple
tests

... optional additional parameters to be passed to the test

Details

The formula used is for the adjusted residual test:

z =
Fi − Ei√

Ei ×
(
1− Ei

n

)
sig = 2× (1− Φ (|z|))

The formula used for the standardized residual test:

z =
Fi − Ei√

Ei

sig = 2× (1− Φ (|z|))

With:

• Fi, the observed count for category $i$

• Ei, the expected count for category $i$

• Φ (. . . ), the cumulative distribution function of the standard normal distribution
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If no expected counts are provide it is assumed they are all equal for each category, i.e. Ei =
n
k

The Bonferroni adjustment is calculated using:

padj = min (p× k, 1)

The other tests use the formula from the one-sample test variant, using the expected count/n as the
expected proportion.

The adjusted residuals will gave the same result as using a one-sample score test. Some sources
will also call these adjusted residuals as standardized residuals (Agresti, 2007, p. 38), and the
standardized residuals used in this function as Pearson residuals (R, n.d.). Haberman (1973, p. 205)
and Sharpe (2015, p. 3) are sources for the terminology used in this function.

Value

a dataframe with:

category the label of the first category

obs. count the observed count

exp. count the expected count

statistic the test statistic

p-value the unadjusted significance

adj. p-value the adjusted significance

test description of the test used

Before, After and Alternatives

Before this an omnibus test might be helpful: ts_freeman_tukey_gof, for Freeman-Tukey Test
of Goodness-of-Fit. ts_freeman_tukey_read, for Freeman-Tukey-Read Test of Goodness-of-
Fit. ts_g_gof, for G (Likelihood Ratio) Goodness-of-Fit Test. ts_mod_log_likelihood_gof,
for Mod-Log Likelihood Test of Goodness-of-Fit. ts_neyman_gof, for Neyman Test of Goodness-
of-Fit. ts_pearson_gof, for Pearson Test of Goodness-of-Fit. ts_powerdivergence_gof, for
Power Divergence GoF Test.

After this you might want to add an effect size measure: es_post_hoc_gof for various effect sizes.

Alternative post-hoc tests: ph_pairwise_bin for Pairwise Binary Tests. ph_pairwise_gof for
Pairwise Goodness-of-Fit Tests. ph_residual_gof_gof for Residuals Using Goodness-of-Fit Tests

The binary test that is performed on each category: ts_binomial_os for One-Sample Binomial
Test. ts_score_os for One-Sample Score Test. ts_wald_os for One-Sample Wald Test.

More info on the adjustment for multiple testing: p_adjust, various adjustment methods.

Author(s)
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Examples

# Examples: get data
dataFile = "https://peterstatistics.com/Packages/ExampleData/GSS2012a.csv"
gssDf <- read.csv(dataFile, sep=",", na.strings=c("", "NA"))
ex1 = gssDf['mar1']

#Example 1 using default settings
ph_residual_gof_bin(ex1)

#Example 2 using a binomial test and Holm correction:
ph_residual_gof_bin(ex1, test="binomial", mtc='holm')

ph_residual_gof_gof Post-Hoc Residuals Using GoF for GoF

Description

This function will perform a goodness-of-fit test using each category and collapsing the other cate-
gories.

The unadjusted p-values and Bonferroni adjusted p-values are both determined.

Usage

ph_residual_gof_gof(
data,
test = "pearson",
expCount = NULL,
mtc = "bonferroni",
...

)

Arguments

data dataframe with scores

test "pearson", "freeman-tukey", "freeman-tukey-read", "g", "mod-log-g", "neyman",
"powerdivergence", "multinomial" optional test to use

expCount optional dataframe with categories and expected counts

mtc optional string. Any of the methods available in p_adjust() to correct for multiple
tests

... optional additional parameters to be passed to the test

Value

a dataframe with:

category the label of the first category

obs. count the observed count of the category

exp. count the expected count of the category

statistic the chi-square test statistic
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df the degrees of freedom

p-value the unadjusted significance

adj. p-value the adjusted significance

minExp the minimum expected count

propBelow5 the proportion of cells with an expected count below 5

test description of the test used

In case of a multinomial test, the same columns except there are no minExp and propBelow5
columns and:

p obs instead of statistic, showing the probability of the observed sample table

n combs. instead of df, showing the number of possible tables

Before, After and Alternatives

Before this an omnibus test might be helpful, these are also the tests used on each category:
ts_freeman_tukey_gof, for Freeman-Tukey Test of Goodness-of-Fit. ts_freeman_tukey_read,
for Freeman-Tukey-Read Test of Goodness-of-Fit. ts_g_gof, for G (Likelihood Ratio) Goodness-
of-Fit Test. ts_mod_log_likelihood_gof, for Mod-Log Likelihood Test of Goodness-of-Fit.
ts_neyman_gof, for Neyman Test of Goodness-of-Fit. ts_pearson_gof, for Pearson Test of
Goodness-of-Fit. ts_powerdivergence_gof, for Power Divergence GoF Test.

After this you might want to add an effect size measure: es_post_hoc_gof for various effect sizes.

Alternative post-hoc tests: ph_pairwise_bin for Pairwise Binary Tests. ph_pairwise_gof for
Pairwise Goodness-of-Fit Tests. ph_residual_gof_bin for Residuals Tests using Binary Tests

More info on the adjustment for multiple testing: p_adjust, various adjustment methods.

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

Examples

# Examples: get data
dataFile = "https://peterstatistics.com/Packages/ExampleData/GSS2012a.csv"
gssDf <- read.csv(dataFile, sep=",", na.strings=c("", "NA"))
ex1 = gssDf['mar1']

#Example 1 using default settings
ph_residual_gof_gof(ex1)

#Example 2 using a G test and Holm correction:
ph_residual_gof_gof(ex1, test="g", mtc='holm')
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ph_sdcf Post-Hoc Steel-Dwass-Critchlow-Fligner Test

Description

This can be used as a post-hoc test for a Kruskal-Wallis test (see ts_kruskal_wallis()).

The test compares each possible pair of categories from the catField and their mean rank. The null
hypothesis is that these are then equal.

Other post-hoc tests that could be considered are Dunn, Nemenyi, Conover, a pairwise Mann-
Whitney U, or pairwise Mood-Median.

Unlike the Dunn, Nemenyi and Conover-Iman test, this test re-calculates the mean ranks for each
pair, using only the scores from the two categories.

Usage

ph_sdcf(catField, ordField, categories = NULL, levels = NULL)

Arguments

catField vector with categories

ordField vector with the scores

categories vector, optional. the categories to use from catField

levels vector, optional. the levels or order used in ordField.

Details

The formula used (Hollander & Wolfe, 1999, p. 241):

q1,2 =
|R1 − E1|√

σ2

With:

R1 =

n1∑
i=1

ri,1

n1,2 = n1 + n2

E1 =
n1 × (n1,2 + 1)

2

σ2 =
n1 × n2

12
×
(
n1,2 + 1− T

n1,2 − 1

)
T =

∑
t3j − tj

The p-value is then determined using (Critchlow & Fligner, 1991, p. 131):

sig. = 1−Q (q1,2, k, df = ∞)
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Note that while looking at the R-code for this, posted by Shigenobu (n.d.), who references Nagata
and Yoshida (1997), an alternative but same result equation for the variance can be used:

σ2 =
n1 × n2

n1,2 × (n1,2 − 1)
×

(
n1∑
i=1

r2i,1 +

n2∑
i=1

r2i,2 −
n1,2 × (n1,2 + 1)

2

4

)
.

Steel (1960) and Dwass (1960) independently derived the basics for this test. Critchlow and Fligner
(1991) added the case for larger samples using the Tukey Range Distribution, and in Hollander and
Wolfe (1999) the version used here can be found, which includes a ties correction.

Symbols used

• k, the number of categories

• tj , the frequency of the j-th unique rank.

• ni, the number of scores in category i

• ri,j , the rank of the j-th score in category i using only the scores from the two categories in
the comparison.

• Q (. . . ), the cumulative distribution function of the standardized range distribution.

Value

A dataframe with:

cat. 1 one of the two categories being compared

cat. 2 second of the two categories being compared

n1 number of cat. 1. cases in comparison

n2 number of cat. 2 cases in comparison

mean rank 1 mean rank of cases in cat. 1, based on all cases (incl. categories not in compari-
son)

mean rank 2 mean rank of cases in cat. 2, based on all cases (incl. categories not in compari-
son)

statistic the q-value of the test

std. statistic the standardized q value

p-value the p-value (significance)

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations
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p_adjust P-Value Adjustments for Multiple Testing

Description

Various methods exist to counter a problem with multiple testing. Bonferroni, Šidák, Hommel,
Holm, Holm-Šidák, and Hochberg all attempt to control the family wise error rate (FWER), while
Benjamini-Hochberg and Benjamini-Yekutieli attempt to control the false discovery rate (FDR).

FWER methods want to minimize the chance of making at least one Type I error (incorrectly re-
jecting the null hypothesis), while FDR methods attempt to balance the false positive and false
negatives.

Usage

p_adjust(p_values, method = "bonferroni", alpha = 0.05)

Arguments

p_values list with the various p-values

method ’bonferroni’, ’sidak’, ’hommel’, ’holm’, ’holm-sidak’, ’hochberg’, ’bh’, ’by’,
’hommel-original’, ’none’ optional method to use for adjustment, Default is
’bonferroni’

alpha : float, optional alpha level to use, only applies to ’hommel-original’. Default is
0.05.

Details

none simply returns the provided p-values

Bonferroni

The formula used for the Bonferroni adjustment:

p̃i = min (1, pi × k)

Where pi is the p-value of test i, and k the number of tests.

Dunn (1961, p. 53) uses the Bonferroni inequality to adjust confidence intervals, which is why this
is also called the Dunn-Bonferroni adjustments.

Bonferroni describes these inequalities in two papers (1935, 1936), but unfortunately I do not read
Italian. The term ’Bonferroni inequalities’ can already be found in Feller (1950, p. 75)

Šidák

The formula used (Šidák, 1967, p. 629):

p̃i = min
(
1, 1− (1− pi)

k
)
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Where pi is the p-value of test i, and k the number of tests.

Hommel
The algorithm used (Wright, 1992, p. 1013):

1. Set ai = pi for all i

2. For each m = k, (k−1), ..., 2 (i.e. in descending order) do the following: 2.1. For i > (k−m)
* 2.1.1. calculate ci =

m×pi

m+i−k * 2.1.2. set cmin = min (ci, foralli) * 2.1.3. if ai < cmin

then ai = cmin 2.2. For i ≤ (k −m) * 2.2.1. let ci = min (cmin,m× pi) * 2.2.2. if ai < ci
then ai = ci

3. padji = ai

Where pi is the p-value of test i after sorting all p-values in ascending order, and k the number of
tests.

Hommel (1988) original procedure is I think slightly different and implemented in ’hommel-original’.
The method from Wright seems to be the method used in the multipletests() function from the
Python library statsmodels.stats.multitest, and the p.adjust() function from R’s stats library. The
advantage of Wright’s algorithm, is that it doesn’t require the alpha level to be known to adjust the
p-values.

Holm
The formula used (SAS, n.d.):

p̃i =

{
k × p1 i = 1

max (p̃i−1, pi × (k + 1− i)) i = 2, . . . , k

Where pi is the p-value of test i after sorting all p-values in ascending order, and k the number of
tests.

Holm (1979, p. 67) describes this procedure, but uses alpha level.

Holm-Šidák
The formula used (SAS, n.d.):

p̃i =

{
1− (1− p1)

k
i = 1

max
(
p̃i−1, 1− (1− pi)

k−i+1
)

i = 2, . . . , k

Where pi is the p-value of test i after sorting all p-values in ascending order, and k the number of
tests.

This uses Holm (1979, p. 67) step-down approach, but instead of using the Bonferroni adjustment,
it uses Šidák.

Hochberg
The formula used (SAS, n.d.):

p̃i =

{
pi i = 1

min (p̃i−1, i× pi) i = 2, . . . , k

Where pi is the p-value of test i after sorting all p-values in DESCENDING order, and k the number
of tests.

The procedure is described by Hochberg (1988, p. 801) using alpha levels for the criteria.

Benjamini-Hochberg
The algorithm used (Benjamini & Hochberg, 1995, p. 293):
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1. Sort the p-values in ascending order

2. find j = max
(
i|pi × k

i ≤ α
)

3. All tests i ≤ j are considered significant.

To find the adjusted p-values (in reverse order):

p̃i =

{
pk i = k

min
(
p̃i+1, pi × k

i

)
i = (k − 1), . . . , 1

Where pi is the p-value of test i after sorting all p-values in ascending order, and k the number of
tests.

Benjamini-Yekutieli

The algorithm used (Benjamini & Yekutieli, 2001, p. 1169):

1. Sort the p-values in ascending order

2. Determine C(k) =
∑k

i=1
1
i

3. find j = max
(
i|pi × k×C(k)

i ≤ α
)

4. All tests i ≤ j are considered significant.

To find the adjusted p-values (in reverse order):

p̃i =

{
pk × C(k) i = k

min
(
p̃i+1, pi × k×C(k)

i

)
i = (k − 1), . . . , 1

Where pi is the p-value of test i after sorting all p-values in ascending order, and k the number of
tests.

Hommel Original

Hommel (1988, p. 384) describes the following algorithm:

1. Compute j = max
(
i ∈ 1, . . . , k|pk−i+j > j × α

i forj = 1, . . . , i
)

2. If the maximum does not exist, reject all, otherwise reject all with pi ≤ α
j

Where pi is the p-value of test i after sorting all p-values in ascending order, and k the number of
tests.

The function will adjust the p-values using:

p̃i =

{
min (1, j × pi) jexists

1 jdoesnotexist

Value

p_adj_val : list with the adjusted p-values

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations
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r_goodman_kruskal_gamma

Goodman-Kruskal Gamma

Description

A rank correlation coefficient. It ranges from -1 (perfect negative association) to 1 (perfect positive
association). A zero would indicate no correlation at all.

A positive correlation indicates that if someone scored high on the first field, they also likely score
high on the second, while a negative correlation would indicate a high score on the first would give
a low score on the second.

Alternatives for Gamma are Kendall Tau, Stuart-Kendall Tau and Somers D, but also Spearman rho
could be considered.

Gamma looks at so-called discordant and concordant pairs, and ignores tied pairs. Kendall Tau b
does the same, but applies a correction for ties. Stuart-Kendall Tau c also, but also takes the size
of the table into consideration. Somers d only makes a correction for tied pairs in one of the two
directions. Spearman rho is more of a variation on Pearson correlation, but applied to ranks. See
Göktaş and İşçi. (2011) for more information on the comparisons.
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Usage

r_goodman_kruskal_gamma(
ordField1,
ordField2,
levels1 = NULL,
levels2 = NULL,
ase = "appr",
useRanks = FALSE

)

Arguments

ordField1 the numeric scores of the first variable

ordField2 the numeric scores of the second variable

levels1 vector, optional. the categories to use from ordField1

levels2 vector, optional. the categories to use from ordField2

ase optional. Which asymptotic standard error to use. Either "appr" (default), 0, 1

useRanks boolean, optional. rank the data first or not. Default is False

Details

The formula used (Goodman & Kruskal, 1954, p. 749):

γ =
P −Q

P +Q

With:

P =

r∑
i=1

c∑
j=1

Pi,j

Q =

r∑
i=1

c∑
j=1

Qi,j

Pi,j = Fi,j × Ci,j

Qi,j = Fi,j ×Di,j

Ci,j =
∑
h<i

∑
k<j

Fh,k +
∑
h>i

∑
k>j

Fh,k

Di,j =
∑
h<i

∑
k>j

Fh,k +
∑
h>i

∑
k<j

Fh,k

The test can be done with a generic approximation:

zγ = γ ×

√
P +Q

n× (1− γ2)

If we assume the alternative hypothesis we can obtain (Goodman & Kruskal, 1963, p. 324; Good-
man & Kruskal, 1972, p. 416; Brown & Benedetti, 1977, p. 310):

zγ =
γ

ASE1
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ASE1 =
4

(P +Q)
2 ×

√√√√ r∑
i=1

c∑
j=1

Fi,j × (Q× Ci,j − P ×Di,j)
2

While if we assume the null hypothesis we can obtain (Brown & Benedetti, 1977, p. 311):

zγ =
γ

ASE0

ASE0 =
2

P +Q
×

√√√√ r∑
i=1

c∑
j=1

Fi,j × (Ci,j −Di,j)
2 − (P −Q)

2

n

The significance (p-value) in each case is then determined using:

sig. = 2× (1− Φ (|zgamma|))

Symbols

• Fi,j the count of scores equal to i in the first variable and j in the second

• n the total sample size

• r the number of unique categories in the first variable (number of rows)

• c the number of unique categories in the second variable (number of columns)

• P double the number of concordant pairs

• Q double the number of discordant pairs

Note that Kendall τa is the same as Goodman-Kruskall gamma.

Alternatives

library(DescTools)

GoodmanKruskalGamma(table(ord1, ord2), conf.level=0.95)

library(MESS)

gkgamma(table(ord1, ord2))

library(ryouready)

ord.gamma(table(ord1, ord2))

Value

A dataframe with:

g the Goodman-Kruskal Gamma value

statistic the z-value used for the test

pValue the significance (p-value)

Author(s)
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r_kendall_tau Kendall Tau (a and b)

Description

A rank correlation coefficient. It ranges from -1 (perfect negative association) to 1 (perfect positive
association). A zero would indicate no correlation at all.

A positive correlation indicates that if someone scored high on the first field, they also likely score
high on the second, while a negative correlation would indicate a high score on the first would give
a low score on the second.

Alternatives for Gamma are Kendall Tau, Stuart-Kendall Tau and Somers D, but also Spearman rho
could be considered.

Kendall Tau b looks at so-called discordant and concordant pairs, but unlike Gamma it does not
ignore tied pairs. Stuart-Kendall Tau c also, but also takes the size of the table into consideration.
Somers d only makes a correction for tied pairs in one of the two directions. Spearman rho is more
of a variation on Pearson correlation, but applied to ranks. See Göktaş and İşçi. (2011) for more
information on the comparisons.

Kendall Tau a is the same as Goodman-Kruskal Gamma. See r_stuart_tau() for Stuart-Kendall-Tau
c.

Usage

r_kendall_tau(
ordField1,
ordField2,
levels1 = NULL,
levels2 = NULL,
version = c("a", "b"),
test = c("kendall-appr", "bb", "as71", "kendall-exact"),
cc = FALSE,
useRanks = FALSE

)
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Arguments

ordField1 the numeric scores of the first variable

ordField2 the numeric scores of the second variable

levels1 vector, optional. the categories to use from ordField1

levels2 vector, optional. the categories to use from ordField2

version string, optional. tau to be determined. Either "b" (default) or "a"

test string, optional. Which test to use. Only applies if version="b". Either "bb"
(default), "kendall-appr", "as71", "kendall-exact"

cc boolean to indicate the use of a continuity correction

useRanks boolean, optional. rank the data first or not. Default is False

Details

Kendall tau looks at concordant pairs versus discordant pairs. These can be calculated using:

nc =
P

2

nd =
Q

2

If the scores are placed in a cross table we can use:

P =

r∑
i=1

c∑
j=1

Pi,j

Q =

r∑
i=1

c∑
j=1

Qi,j

Pi,j = Fi,j × Ci,j

Qi,j = Fi,j ×Di,j

Ci,j =
∑
h<i

∑
k<j

Fh,k +
∑
h>i

∑
k>j

Fh,k

Di,j =
∑
h<i

∑
k>j

Fh,k +
∑
h>i

∑
k<j

Fh,k

Alternative, we don’t have to use a cross table:

P =

n∑
i=1

Pi

Q =

n∑
i=1

Qi

Pi =

n∑
j=1

{
1 sign (xi − xj)× sign (yi − yj) = 1

0 else

Qi =

n∑
j=1

{
1 sign (xi − xj)× sign (yi − yj) = −1

0 else

#’ Symbols used:
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• nc the number of concordant pairs

• nd the number of discondant pairs

• n is the number of pairs

• r the number of categories in the first variable (i.e. number of rows)

• c the number of categories in the second variable (i.e. number of columns)

• Fh,k is the number of cases that scored h for the first variable, and k for the second

• P is double the number of concordant pairs

• Q is double the number of discordant pairs

Tau a
The formula used for the value of τa is (Kendall, 1938, p. 82):

τa =
P −Q

n× (n− 1)

The formula can also be written as:
τa =

nc − nd

n0

With:

n0 =
n× (n− 1)

2

Note that Kendall τa is the same as Goodman-Kruskall gamma.

Tau b
For τb the formula used is (Kendall, 1945, p. 243):

τb =
P −Q√
Dr ×Dc

With:

Dr = n2 −
r∑

i=1

RS2
i

Dc = n2 −
c∑

j=1

CS2
i

RSi =

c∑
j=1

Fi,j

CSi =

r∑
i=1

Fi,j

Note that RSi are the frequencies of the scores in the first variable and CSi are the frequencies of
the scores in the second variable.

Alternative the formula can be written as:

τb =
nc − nd√

(n0 − t1)× (n0 − t2)

With:

t1 =

n∑
i=1

RSi ∗ (RSi − 1)

2
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t2 =

n∑
i=1

CSi ∗ (CSi − 1)

2

Testing
For Tau a the following normal approximation can be used (Kendall, 1962, p. 51):

za =
3×

(
P−Q

2

)
√

n×(n−1)×(2×n+5)
2

sig. = 2× (1− Φ (|za|))

Or written with τa (Schaeffer & Levitt, p. 341):

za =
τa√
σ2
τa

n

With:
σ2
τa =

4× n+ 10

9× n× (n− 1)

For Tau b an approximation can be used with:

zb =
τb

ASE

For the equation of ASE two variations to choose from: Using Brown and Benedetti (1977, p. 311):

ASE0 = 2×

√∑r
i=1

∑c
j=1 Fi,j × (Ci,j −Di,j)

2 − (P−Q)2

n

Dr ×Dc

This is used when test="bb"

The calculation of
∑c

j=1 Fi,j × (Ci,j −Di,j)
2 can then also be accomplished using:

n∑
i=1

(Pi −Qi)
2

Or a version from Kendall (1962, p. 55):

ASE = 2×
√
v

With:
v =

v0 − vr − vc
18

+ v1 + v2

v0 = n× (n− 1)× (2× n+ 5)

vr =

r∑
i=1

RSi × (RSi − 1)× (2×RSi + 5)

vc =

c∑
j=1

CSj × (CSj − 1)× (2× CSj + 5)

v1 =
(
∑r

i=1 RSi × (RSi − 1)× (RSi − 2))×
(∑c

j=1 CSj × (CSj − 1)× (CSj − 2)
)

9× n× (n− 1)× (n− 2)
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This is used when test="kendall" and the default

For the AS 71 algorithm the test statistic is given by:

S =

(
n

2

)
× |τ | = n× (n− 1)

2
× |τ |

The absolute value of τ is used, since AS 71 only provides the upper-tail probabilities.

For the Kendall method the test statistic is the number of concordant pairs nc.

See the documentation of di_kendall_tau() for more info on the AS 71 and Kendall algorithms.

The continuity correction is applied as (Schaeffer & Levitt, p. 342):

τcc = |τ | − 2

n× (n− 1)

or depending on the approximation used (Kendall, 1961, p. 54):

Scc = |S| − 1

Where:

S = nc − nd

Note that this correction should actually be adjusted in case ties are present. Hopefully this can be
implemented in a future update.

Alternatives

R’s stats library

cor.test(ord1, ord2, method="kendall", exact=FALSE)

cor.test(ord1, ord2, method="kendall", exact=TRUE)

cor.test(ord1, ord2, method="kendall", exact=FALSE, continuity = TRUE)

library(ryouready)

ord.tau(table(ord1, ord2))

Value

A dataframe with:

tau the tau value

statistic the statistic from the test (z-value)

pValue the significance (p-value)

test description of the test used

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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r_pearson Pearson Correlation Coefficient

Description

A measure of linear correlation. A -1 indicates a perfect negative linear correlation (i.e. a straight
line going down, if the score in one field goes up, the other one goes down), a 0 would indicate no
correlation, and a +1 a perfect positive linear correlation (i.e. a straight line going up, if the score in
one field goes up, the other one goes up as well).

Various tests can be used to determine if the coefficient is significantly different from zero. See
notes for details.

Usage

r_pearson(
field1,
field2,
corr = c("none", "wherry", "fisher", "olkin-pratt-1", "olkin-pratt-2",
"olkin-pratt-3", "smith", "cattin", "pratt", "herzberg"),

test = c("t", "z")
)

Arguments

field1 the scores on the first variable

field2 the scores on the second variable

corr string, optional. Which adjustment to make if any (default is "none")

test string, optional. Which test to use (see details). Either "t" (default), "z"
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Details

This function makes use of the hyperg_2F1 function from the gsl library.

The formula used (Pearson, 1896, p. 265):

r =

∑n
i=1 (xi − x̄)× (yi − ȳ)

SSx × SSy

With:

SSx =

n∑
i=1

(xi − x̄)
2

SSy =

n∑
i=1

(yi − ȳ)
2

x̄ =

∑n
i=1 xi

n

ȳ =

∑n
i=1 yi
n

Symbols used:

• n the number of pairs (sample size)

• xi the i-th score in the first variable

• yi the i-th score in the second variable

The test if test="t" is used is from Pugh and Winslow (1966, pp. 196,199):

sig. = 2× (1− T (|tr| , df))

With:

tr = r ×
√

n− 2

1− r2

df = n− 2

The test if test="z" is used is based on a Fisher transformation (Fisher, 1915, p. 521):

sig. = 2× (1− Φ (|zr|))

With:
zr = atanh (r)×

√
n− 3

This is derived since the Fisher transformation has a standard error of:

SE =
1

n− 3

As a source for this standard error Fisher (1921) is sometimes reported, but couldn’t clearly find
it in there. It can for example be found in Steiger (1980, p. 246) who refers to Olkin and Siotani
(1964).

The correlation coefficient is biased and can be adjusted. There are many different adjustments
suggested. For a great overview see Raju et al. (1997).

Fisher (1915, p. 521) - adj="fisher":

radj = r ×
(
1 +

1− r2

2× n

)
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Smith (Ezekiel, 1929, p. 100) - adj="smith":

radj =

√
1− 1− r2

1− 2
n

=

√
1− n

n− 2
× (1− r2)

Wherry (1931, p. 451) - adj="wherry":

radj =

√
(n− 1)× r2 − 1

n− 2
=

√
1− (1− r2)× n− 1

n− 2

Ezekiel (1930 as cited in Raju et al., 1997, p. 295) - adj="ezekiel":

radj =

√
1− n− 1

n− 3
× (1− r2)

Olkin-Pratt (1958, p. 211) - adj="olkin-pratt-1":

radj = r × HG
(
1

2
,
1

2
,
n− 1

2
, 1− r2

)

Olkin-Pratt (1958, p. 203) - adj="olkin-pratt-2"

radj = r ×
(
1 +

1− r2

2× (n− 3)

)

Cattin (1980a, p. 64; 1980b, p. 409) - adj="cattin":

radj =

√√√√1− (1− r2)×

(
1 +

2× (1− r2)

n− 1
+

8× (1− r2)
2

(n− 3)× (n+ 1)

)

Pratt (1964, as cited in Claudy, 1978, p. 597) - adj="pratt":

radj =

√
1− (1− r2)×

(
1 +

2× (1− r2)

n− 4.3

)

Herzberg (1969, p. 5) - adj="herzberg":

radj =

√
1− (1− r2)×

(
1 +

2× (1− r2)

n− 1

)

Claudy (1978, p. 603) - adj="claudy":

radj =

√
1− n− 4

n− 2
× (1− r2)×

(
1 +

2× (1− r2)

n− 1

)

Alternatives

R’s stats library has a similar function.

cor.test(var1, var2)
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Value

A dataframe with:

r the Pearson Correlation Coefficient

statistic the test statistic

df degrees of freedom (only applicable for t test)

p-value the significance (p-value)

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References
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Claudy, J. G. (1978). Multiple regression and validity estimation in one sample. Applied Psycho-
logical Measurement, 2(4), 595–607. https://doi.org/10.1177/014662167800200414
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r_point_biserial Point Biserial Correlation Coefficient

Description

This can be seen as coding a binary variable with the groups into 0 and 1, and then calculates a
Pearson correlation coefficient between the those values and the scores.

This gives the same result as the formula used and as input the Student t-test statistic and corre-
sponding degrees of freedom.

Usage

r_point_biserial(t, df)

Arguments

t the test statistic value

df the degrees of freedom

Details

The formula used is (Friedman, 1968, p. 245):

rpb =

√
t2

t2 + df

Symbols used:

• t the test statistic of the independent samples Student t-test

• df the degrees of freedom of the independent samples Student t-test

Value

Point Biserial Correlation Coefficient

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Friedman, H. (1968). Magnitude of experimental effect and a table for its rapid estimation. Psycho-
logical Bulletin, 70(4), 245–251. https://doi.org/10.1037/h0026258

See Also

ts_student_t_is, Student t-test

Examples

r_point_biserial(0.9984, 1967)

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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r_polychoric Polychoric Correlation Coefficient

Description

Polychoric Correlation Coefficient

Usage

r_polychoric(dataVar, groupVar)

Arguments

dataVar A vector with the scores data

groupVar A vector with the group data

Details

This simply uses the polychor() function from the polycor library

Value

Polychoric Correlation Coefficient value

Author(s)

P. Stikker

Please visit: https://PeterStatistics.com

YouTube channel: https://www.youtube.com/stikpet

Examples

scores = c(5, 12, 3, 4, 6, 1, 11, 13, NA)
groups = c("A","A","A","B","B","B","B", NA, "C")
r_polychoric(scores, groups)

r_rank_biserial_is (Glass) Rank Biserial Correlation / Cliff Delta

Description

This function will calculate Rank biserial correlation coefficient (independent-samples)

Usage

r_rank_biserial_is(catField, ordField, categories = NULL, levels = NULL)
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Arguments

catField A vector with the scores data

ordField A vector with the group data

categories optional vector with categories to use and order for the categorical field. Other-
wise the first two found will be used.

levels optional vector with the labels of the ordinal field in order.

Details

The formula used is (Glass, 1966, p. 626):

rb =
2×

(
R̄1 − R̄2

)
n

With:

R̄i =
Ri

ni

Symbols used:

• R̄i the average of ranks in category i

• Ri the sum of ranks in category i

• n the total sample size

• ni the number of scores in category i

Glass (1966) showed that the formula was the same as that of the rank biserial from Cureton (1956).
Cliff’s delta (Cliff, 1993, p. 495) is actually also the same.

The rank biserial can be converted to a Cohen d (using the es_convert() function), and then the
rules-of-thumb for Cohen d could be used (th_cohen_d())

Value

(Glass) Rank Biserial Correlation / Cliff Delta value

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Cliff, N. (1993). Dominance statistics: Ordinal analyses to answer ordinal questions. Psychological
Bulletin, 114(3), 494–509. https://doi.org/10.1037/0033-2909.114.3.494

Cureton, E. E. (1956). Rank-biserial correlation. Psychometrika, 21(3), 287–290. https://doi.org/10.1007/BF02289138

Glass, G. V. (1966). Note on rank biserial correlation. Educational and Psychological Measure-
ment, 26(3), 623–631. https://doi.org/10.1177/001316446602600307

See Also

es_convert, to convert to Cohen d, use fr="rb", to="cohend".

th_cohen_d, rules of thumb for Cohen d

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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Examples

#Example 1: dataframe
dataFile = "https://peterstatistics.com/Packages/ExampleData/GSS2012a.csv"
df1 <- read.csv(dataFile, sep=",", na.strings=c("", "NA"))
myLevels = c('Not scientific at all', 'Not too scientific', 'Pretty scientific', 'Very scientific')
r_rank_biserial_is(df1['sex'], df1['accntsci'], levels=myLevels)

#Example 2: vectors
binary = c("apple", "apple", "apple", "peer", "peer", "peer", "peer")
ordinal = c(4, 3, 1, 6, 5, 7, 2)
r_rank_biserial_is(binary, ordinal, categories=c("peer", "apple"))

r_rank_biserial_os Rank biserial correlation coefficient (one-sample)

Description

This function will calculate Rank biserial correlation coefficient (one-sample)

Usage

r_rank_biserial_os(data, levels = NULL, mu = NULL)

Arguments

data vector with the numeric scores

levels optional vector with levels in order

mu optional parameter to set the hypothesized median. If not used the midrange is
used

Details

This function is shown in this YouTube video and the measure is also described at PeterStatis-
tics.com

The formula used (Kerby, 2014, p. 5):

rrb =
|Rpos −Rneg|

R

This is actually the same as (King & Minium, 2008, p. 403):

rrb =
4×

∣∣∣Rmin − Rpos+Rmin

2

∣∣∣
n× (n+ 1)

Symbols used:

• Rpos the sum of the ranks with a positive deviation from the hypothesized median

• Rneg the sum of the ranks with a positive deviation from the hypothesized median

• Rmin the minimum of Rpos,Rneg

• n the number of ranks with a non-zero difference with the hypothesized median

https://youtu.be/31jr7jUCni4
https://peterstatistics.com/Terms/Correlations/RankBiserialCorrelation.html
https://peterstatistics.com/Terms/Correlations/RankBiserialCorrelation.html
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• R the sum of all ranks, i.e. Rpos +Rneg

If no hypothesized median is provided, the midrange is used, defined as:

xmax − xmin

2

Where xmax is the maximum value of the scores, and xmin the minimum

Value

dataframe with the hypothesized median (mu) and the effect size measure

Before, After and Alternatives

Before this measure you might want to perform the test: ts_sign_os, for One-Sample Sign Test.
ts_trinomial_os, for One-Sample Trinomial Test. ts_wilcoxon_os, for One-Sample Wilcoxon
Signed Rank Test.

After this you might want a rule-of-thumb: th_rank_biserial, for Rank Biserial Correlation rule-
of-thumb

Alternative effect size measure with ordinal data: es_common_language_os, for the Common Lan-
guage Effect Size. es_dominance, for the Dominance score. r_rosenthal, for the Rank-Biserial
Correlation

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Kerby, D. S. (2014). The simple difference formula: An approach to teaching nonparametric corre-
lation. Comprehensive Psychology, 3, 1–9. https://doi.org/10.2466/11.IT.3.1

King, B. M., & Minium, E. W. (2008). Statistical reasoning in the behavioral sciences (5th ed.).
John Wiley & Sons, Inc.

Examples

file2 = 'https://peterstatistics.com/Packages/ExampleData/StudentStatistics.csv'
df2 = read.csv(file2, sep=';', na.strings=c("", "NA"))
ex1 = df2[['Teach_Motivate']]
order = c("Fully Disagree", "Disagree", "Neither disagree nor agree", "Agree", "Fully agree")
r_rank_biserial_os(ex1, levels=order)

ex2 = c(1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5)
r_rank_biserial_os(ex2)

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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r_rosenthal Rosenthal Correlation Coefficient

Description

This function will calculate Rosenthal Correlation Coefficient. A simple correlation coefficient that
divides a z-score by the square root of the sample size.

Usage

r_rosenthal(zVal, n)

Arguments

zVal z-value of test

n total sample size

Details

This function is shown in this YouTube video and the effect size is also described at PeterStatis-
tics.com

The formula used (Rosenthal, 1991, p. 19):

r =
z√
n

Symbols used:

• n the sample size

• z the calculated z-statistic value

Rosenthal (1991) is the oldest reference I could find for this correlation coefficient. However, Cohen
(1988, p. 275) actually has a measure ’f’ that has the same equation.

For a classification the same as for Pearson correlation use th_pearson_r()

Value

r the effect size measure

Before, After and Alternatives

Before this measure you might want to perform the test: ts_sign_os, for One-Sample Sign Test.
ts_trinomial_os, for One-Sample Trinomial Test. ts_wilcoxon_os, for One-Sample Wilcoxon
Signed Rank Test.

After this you might want to use the rules-of-thumb for a Pearson Correlation or Cohen f: th_pearson_r,
for rules of thumb for a Pearson correlation coefficient th_cohen_f, for rules of thumb for a Cohen
f

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

https://youtu.be/ycip6vF-7_U
https://peterstatistics.com/Terms/Correlations/RosenthalCorrelationCoefficient.html
https://peterstatistics.com/Terms/Correlations/RosenthalCorrelationCoefficient.html
https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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References

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). L. Erlbaum
Associates.

Rosenthal, R. (1991). Meta-analytic procedures for social research (Rev. ed). Sage Publications.

Examples

z = 1.143943
n = 20
r_rosenthal(z, n)

r_somers_d Somers’ d

Description

A rank correlation coefficient. It ranges from -1 (perfect negative association) to 1 (perfect positive
association). A zero would indicate no correlation at all.

A positive correlation indicates that if someone scored high on the first field, they also likely score
high on the second, while a negative correlation would indicate a high score on the first would give
a low score on the second.

Alternatives for Somers D are Gamma, Kendall Tau, and Stuart-Kendall Tau, but also Spearman rho
could be considered.

Kendall Tau b looks at so-called discordant and concordant pairs, but unlike Gamma it does not
ignore tied pairs. Stuart-Kendall Tau c also, but also takes the size of the table into consideration.
Somers d only makes a correction for tied pairs in one of the two directions. Spearman rho is more
of a variation on Pearson correlation, but applied to ranks. See Göktaş and İşçi. (2011) for more
information on the comparisons.

Kendall Tau a is the same as Goodman-Kruskal Gamma.

Usage

r_somers_d(
ordField1,
ordField2,
levels1 = NULL,
levels2 = NULL,
useRanks = FALSE

)

Arguments

ordField1 the numeric scores of the first variable

ordField2 the numeric scores of the second variable

levels1 vector, optional. the categories to use from ordField1

levels2 vector, optional. the categories to use from ordField2

useRanks boolean, optional. rank the data first or not. Default is False
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Details

Asymmetric versions The formula used is given by (Somers, 1962, p. 804):

dy|x =
P −Q

Dr
, dx|y =

P −Q

Dc

With:

P =

r∑
i=1

c∑
j=1

Pi,j

Q =

r∑
i=1

c∑
j=1

Qi,j

Pi,j = Fi,j × Ci,j

Qi,j = Fi,j ×Di,j

Ci,j =
∑
h<i

∑
k<j

Fh,k +
∑
h>i

∑
k>j

Fh,k

Di,j =
∑
h<i

∑
k>j

Fh,k +
∑
h>i

∑
k<j

Fh,k

Dr = n2 −
r∑

i=1

RS2
i

Dc = n2 −
c∑

j=1

CS2
i

RSi =

c∑
j=1

Fi,j

CSi =

r∑
i=1

Fi,j

Symbols used:

• n is the number of pairs

• r the number of categories in the first variable (i.e. number of rows)

• c the number of categories in the second variable (i.e. number of columns)

• Fh,k is the number of cases that scored h for the first variable, and k for the second

• P is double the number of concordant pairs

• Q is double the number of discordant pairs

Note that RSi are the frequencies of the scores in the first variable and CSi are the frequencies of
the scores in the second variable.

For testing (SPSS, 2006, p. 121):

zy|x =
dy|x

ASEdy|x,0

sig. = 2×
(
1− Φ

(∣∣zy|x∣∣))
With:

ASEdy|x,0 =
2

Dr
×

√
s
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s =
∑
i

= 1r
c∑

j=1

Fi,j × (Ci,j −Di,j)
2 − (P −Q)

2

n

and similar:

zx|y =
dx|y

ASEdx|y,0

sig. = 2×
(
1− Φ

(∣∣zx|y∣∣))
With:

ASEdx|y,0 =
2

Dc
×

√
s

Symmetric

The symmetric version is the same result as Kendall tau b and calculated using:

d =
2× (P −Q)

Dr +Dc

and tested using:

zd =
d

ASEd,0

sig. = 2×
(
1− Φ

(∣∣zy|x∣∣))
With:

ASEd,0 =
4

Dr +Dc
×

√
s

The function will also calculate the ASE1 which are defined as:

ASEdy|x,1 =
2×

√∑3
i=1

∑c
j=1 Fi,j × (Dr × (Ci,j −Di,j)− (P −Q)× (n−RSi))

2

D2
r

ASEdx|y,1 =
2×

√∑3
i=1

∑c
j=1 Fi,j × (Dc × (Ci,j −Di,j)− (P −Q)× (n− CSj))

2

D2
c

ASEd,1 =
2×ASEτb,1

Dr +Dc
×
√
Dc ×Dc

With:

ASEτb,1 =

√∑3
i=1

∑c
j=1 Fi,j ×

(
2×

√
Dr ×Dc × (Ci,j −Di,j) + τb × vi,j

)2 − n3 × τ2b × (Dr +Dc)
2

Dr ×Dc

vi,j = RSi ×Dc + CSj ×Dr

Alternatives

library(DescTools)

SomersDelta(ord1, ord2, direction = "row")

SomersDelta(ord1, ord2, direction = "column")

library(ryouready)

ord.somers.d(table(ord1,ord2))
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Value

A dataframe with:

dependent which version (all three are in the rows)
d the Sommers d value
statistic the test statistic (z-value)
pValue the significance (p-value)

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Göktaş, A., & İşçi, Ö. (2011). A comparison of the most commonly used measures of association for
doubly ordered square contingency tables via simulation. Advances in Methodology and Statistics,
8(1). doi:10.51936/milh5641

Somers, R. H. (1962). A new asymmetric measure of association for ordinal variables. American
Sociological Review, 27(6), 799–811. doi:10.2307/2090408

SPSS. (2006). SPSS 15.0 algorithms.

r_spearman_rho Spearman Rho / Rank Correlation Coefficient

Description

The Spearman Rank Correlation Coefficient is the Pearson Correlation Coefficient, after the scores
first have been converted to ranks.

This function makes use of di_spearman() for the test of this correlation, which requires the pspear-
man library for exact computations.

Usage

r_spearman_rho(
ordField1,
ordField2,
levels1 = NULL,
levels2 = NULL,
test = c("t", "z-fieller", "z-olds", "iman-conover", "as89", "exact"),
cc = FALSE

)

Arguments

ordField1 the numeric scores of the first variable
ordField2 the numeric scores of the second variable
levels1 vector, optional. the categories to use from ordField1
levels2 vector, optional. the categories to use from ordField2
test the test to be used. Either "t" (default), "as89", "exact", "iman-conover", "z-

fieller", "z-olds", "none"
cc boolean to indicate the use of a continuity correction

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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Details

The formula used is (Spearman, 1904, p. 77):

rs =
SSrx,ry

SSrx × SSry

With:

SSrx =

n∑
i=1

(rxi
− r̄x)

2

SSry =

n∑
i=1

(ryi
− r̄y)

2

SSrx,ry =

n∑
i=1

(rxi − r̄x)× (ryi − r̄y)

Symbols

• rxi the i-th rank of the scores of the first variable

• ryi
the i-th rank of the scores of the second variable

• n the total sample size (number of ranks)

If all the ranks are distinct (i.e. no ties) the formula can also be written as:

rs = 1− 6

n× (n2 − 1)
× S

With:

S =

n∑
i=1

d2i

d2i = (rxi
− ryi

)
2

The test can be performed in different ways. Options to choose from are:

• "t" uses a Student t distribution approximation

• "z-fieller" uses a standard normal approximation from Fieller

• "z-old" uses standard normal approximation from Old

• "iman-conover" a combination of z and t distribution from Iman and Conover

• "AS89" uses the AS 89 algorithm

• "exact" uses an exact distribution

See for the details of each the di_spearman() function

A continuity correction can be applied (Zar, 1972, p. 579):

rccs = |rs| −
6

n3 − n

Alternatives
R’s stats

Using the t-approximation:

cor.test(ord1, ord2, method="spearman")
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Using AS89

cor.test(ord1, ord2, method="spearman", exact=TRUE)

library(pspearman)

spearman.test(ord1, ord2, approximation="t-distribution")

spearman.test(ord1, ord2, approximation="AS89")

spearman.test(ord1, ord2, approximation="exact")

Value

A dataframe with:

rs the correlation coefficient

pValue the significance (p-value)

statistic the statistic from the test (only if applicable)

df the degrees of freedom (only if applicable)

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Göktaş, A., & İşçi, Ö. (2011). A comparison of the most commonly used measures of association for
doubly ordered square contingency tables via simulation. Advances in Methodology and Statistics,
8(1). doi:10.51936/milh5641

Spearman, C. (1904). The proof and measurement of association between two things. The American
Journal of Psychology, 15(1), 72–101.

Zar, J. H. (1972). Significance testing of the Spearman rank correlation coefficient. Journal of the
American Statistical Association, 67(339), 578–580. doi:10.1080/01621459.1972.10481251

r_stuart_tau Stuart Tau c / Kendall Tau c

Description

A rank correlation coefficient. It ranges from -1 (perfect negative association) to 1 (perfect positive
association). A zero would indicate no correlation at all.

A positive correlation indicates that if someone scored high on the first field, they also likely score
high on the second, while a negative correlation would indicate a high score on the first would give
a low score on the second.

Alternatives for Gamma are Kendall Tau, Stuart-Kendall Tau and Somers D, but also Spearman rho
could be considered.

Kendall Tau b looks at so-called discordant and concordant pairs, but unlike Gamma it does not
ignore tied pairs. Stuart-Kendall Tau c also, but also takes the size of the table into consideration.
Somers d only makes a correction for tied pairs in one of the two directions. Spearman rho is more
of a variation on Pearson correlation, but applied to ranks. See Göktaş and İşçi. (2011) for more
information on the comparisons.

Kendall Tau a is the same as Goodman-Kruskal Gamma.

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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Usage

r_stuart_tau(
ordField1,
ordField2,
levels1 = NULL,
levels2 = NULL,
cc = FALSE,
useRanks = FALSE

)

Arguments

ordField1 the numeric scores of the first variable

ordField2 the numeric scores of the second variable

levels1 vector, optional. the categories to use from ordField1

levels2 vector, optional. the categories to use from ordField2

cc boolean to indicate the use of a continuity correction

useRanks boolean, optional. rank the data first or not. Default is False

Details

Tau looks at concordant pairs versus discordant pairs. These can be calculated using:

nc =
P

2

nd =
Q

2

If the scores are placed in a cross table we can use:

P =

r∑
i=1

c∑
j=1

Pi,j

Q =

r∑
i=1

c∑
j=1

Qi,j

Pi,j = Fi,j × Ci,j

Qi,j = Fi,j ×Di,j

Ci,j =
∑
h<i

∑
k<j

Fh,k +
∑
h>i

∑
k>j

Fh,k

Di,j =
∑
h<i

∑
k>j

Fh,k +
∑
h>i

∑
k<j

Fh,k

Alternative, we don’t have to use a cross table:

P =

n∑
i=1

Pi

Q =

n∑
i=1

Qi
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Pi =

n∑
j=1

{
1 sign (xi − xj)× sign (yi − yj) = 1

0 else

Qi =

n∑
j=1

{
1 sign (xi − xj)× sign (yi − yj) = −1

0 else

Symbols used:

• nc the number of concordant pairs

• nd the number of discondant pairs

• n is the number of pairs

• r the number of categories in the first variable (i.e. number of rows)

• c the number of categories in the second variable (i.e. number of columns)

• Fh,k is the number of cases that scored h for the first variable, and k for the second

• P is double the number of concordant pairs

• Q is double the number of discordant pairs

The formula used is (Stuart, 1953, p. 107):

τc =
P −Q

n2 × m−1
m

With:
m = min (r, c)

Testing
The following normal approximation can be used (Brown & Benedetti, 1977, p. 311):

zc =
τc

ASE

ASE0 =
2×m

(m− 1)
2 ×

√√√√ r∑
i=1

c∑
j=1

Fi,j × (Ci,j −Di,j)
2 − (P −Q)

2

n

The calculation of
∑c

j=1 Fi,j × (Ci,j −Di,j)
2 can then also be accomplished using:

n∑
i=1

(Pi −Qi)
2

The continuity correction is applied as (Schaeffer & Levitt, p. 342):

τcc = |τ | − 2

n× (n− 1)

Note that this correction should actually be adjusted in case ties are present. Hopefully this can be
implemented in a future update.

Alternatives
library(DescTools)

StuartTauC(ord1, ord2)

library(ryouready)

ord.tau(table(ord1, ord2))
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Value

A dataframe with:

tau the tau value

statistic the test statistic (z-value)

pValue the significance (p-value)

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Brown, M. B., & Benedetti, J. K. (1977). Sampling behavior of test for correlation in two-way con-
tingency tables. Journal of the American Statistical Association, 72(358), 309–315. doi:10.2307/2286793

Göktaş, A., & İşçi, Ö. (2011). A comparison of the most commonly used measures of association for
doubly ordered square contingency tables via simulation. Advances in Methodology and Statistics,
8(1). doi:10.51936/milh5641

Schaeffer, M. S., & Levitt, E. E. (1956). Concerning Kendall’s tau, a nonparametric correlation
coefficient. Psychological Bulletin, 53(4), 338–346. doi:10.1037/h0045013

Stuart, A. (1953). The estimation and comparison of strengths of association in contingency tables.
Biometrika, 40(1/2), 105. doi:10.2307/2333101

r_tetrachoric Tetrachoric Correlation Coefficient

Description

In essence this attempts to mimic a correlation coefficient between two scale variables. It can be
defined as "An estimate of the correlation between two random variables having a bivariate normal
distribution, obtained from the information from a double dichotomy of their bivariate distribution"
(Everitt, 2004, p. 372).

This assumes the two binary variables have ‘hidden’ underlying normal distribution. If so, the
combination of the two forms a bivariate normal distribution with a specific correlation between
them. The quest is then to find the correlation, such that the cumulative density function of the
z-values of the two marginal totals of the top-left cell (a) match that value.

This is quite tricky to do, so a few have proposed an approximation for this. These include Yule r,
Pearson Q4 and Q5, Camp, Becker and Clogg, and Bonett and Price , all available and more with
(es_bin_bin).

Besides closed form approximation formula’s, various algorithms have been designed as well. The
three most often mentioned are Brown (1977), Kirk (1973), and Divgi (1979), available in this
function.

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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Usage

r_tetrachoric(
field1,
field2,
categories1 = NULL,
categories2 = NULL,
method = "divgi"

)

Arguments

field1 : dataframe field with categories for the rows

field2 : dataframe field with categories for the columns

categories1 : optional list with selection and/or order for categories of field1

categories2 : optional list with selection and/or order for categories of field2

method method to use (see details). Either "divgi" (default), "search", "kirk", "brown"

Details

The "search" method does a binary search for rt using the bivariate normal distribution from the
fMultivar library.

"kirk" will use Kirk (1973) Fortran TET8 procedure, adapted by stikpet

"brown" will use Brown (1977) - Algorithm AS 116

"divgi" will use Divgi (1979) algorithm

Flow charts of these algorithms can be found at https://peterstatistics.com

Value

Tetrachoric Correlation Coefficient

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Brown, M. B. (1977). Algorithm AS 116: The tetrachoric correlation and its asymptotic standard
error. Applied Statistics, 26(3), 343. https://doi.org/10.2307/2346985

Divgi, D. R. (1979). Calculation of the tetrachoric correlation coefficient. Psychometrika, 44(2),
169–172. https://doi.org/10.1007/BF02293968

Kirk, D. B. (1973). On the numerical approximation of the bivariate normal (tetrachoric) correlation
coefficient. Psychometrika, 38(2), 259–268. https://doi.org/10.1007/BF02291118

Examples

#Example: dataframe
dataFile = "https://peterstatistics.com/Packages/ExampleData/GSS2012a.csv"
df1 <- read.csv(dataFile, sep=",", na.strings=c("", "NA"))
r_tetrachoric(df1[['mar1']], df1[['sex']], categories1=c("WIDOWED", "DIVORCED"))

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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srf Wilcoxon Sum-of-Ranks Frequency Function

Description

This helper function will give the count for a sum of ranks of T, given a sample size of n, using the
recursive formula.

Usage

srf(T, n)

Arguments

T int with the sum of ranks

n int with the sample size

Details

The recursive method uses the formula from McCornack (1965, p. 864):

srf (x, y) =


0 x < 0

0 x >
(
y+1
2

)
1 y = 1 ∧ (x = 0 ∨ x = 1)

srf∗ (x, y) y ≥ 0

with:

srf∗ (x, y) = srf (x− y, y − 1) + srf (x, y − 1)

Value

A the requested count

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

McCornack, R. L. (1965). Extended tables of the Wilcoxon matched pair signed rank statistic.
Journal of the American Statistical Association, 60(311), 864–871. doi:10.2307/2283253

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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tab_cross Cross Table / Contingency Table

Description

A contingency table can be defined as “tables arising when observations on a number of categorical
variables are cross-classified” (Everitt, 2004, p.89).

There are quite a few variations on the name for this type of table. Perhaps the oldest name is
actually contingency table, which was the name Pearson (1904, p. 34) gave to them. Another
popular name is cross tabulation (Upton & Cook, 2002, p. 79), but also cross classification table
(Zekeck, 2014, p. 71) and bivariate frequency table (Porkess, 1988, p. 48) are used. The one I used
cross table which can for example be found in Newbold et al. (2013, p. 9) or Sá (2007, p. 52).

Usage

tab_cross(
field1,
field2,
order1 = NULL,
order2 = NULL,
percent = c(NULL, "all", "row", "column"),
totals = "exclude"

)

Arguments

field1 : dataframe field with categories for the rows

field2 : dataframe field with categories for the columns

order1 : optional list with order for categories of field1

order2 : optional list with order for categories of field2

percent : optional which percentages to show. Either "none" (default), "all", "row",
"column"

totals : optional to add margin totals. Either "exclude" (default), or "include"

Value

dataframe : the cross table

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Everitt, B. (2004). The Cambridge dictionary of statistics (2nd ed.). Cambridge University Press.
Newbold, P., Carlson, W. L., & Thorne, B. (2013). Statistics for business and economics (8th ed).
Pearson.

Pearson, K. (1904). Contributions to the Mathematical Theory of Evolution. XIII. On the theory of
contingency and its relation to association and normal correlation. Dulau and Co.

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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Porkess, R. (1988). Dictionary of statistics. Collins.

Sá, J. P. M. de. (2007). Applied statistics: Using SPSS, Statistica, MATLAB, and R (2nd ed.).
Springer.

Upton, G., & Cook, I. (2002). Oxford: Dictionary of statistics. Oxford University Press.

Zedeck, S. (Ed.). (2014). APA dictionary of statistics and research methods. American Psycholog-
ical Association.

Examples

#Example: dataframe
dataFile = "https://peterstatistics.com/Packages/ExampleData/GSS2012a.csv"
df1 <- read.csv(dataFile, sep=",", na.strings=c("", "NA"))
tab_cross(df1[['mar1']], df1[['sex']], percent="column", totals="include")

orderR = c("DIVORCED", "WIDOWED", "SEPARATED", "MARRIED", "NEVER MARRIED")
orderC = c("MALE", "FEMALE")
tab_cross(df1[['mar1']], df1[['sex']], order1=orderR, order2=orderC)

order = c("Not scientific at all", "Not too scientific", "Pretty scientific", "Very scientific")
tab_cross(df1[['mar1']], df1[['accntsci']], order2=order)

tab_frequency Frequency Table

Description

A frequency table is defined as "a table showing (1) all of the values for a variable in a dataset,
and (2) the frequency of each of those responses. Some frequency tables also show a cumulative
frequency and proportions of responses" (Warne, 2017, p. 512).

A frequency table can help to get impression of your survey data of a binary, nominal, or ordinal
variable. It could also help with a scale variable, provided there are not too many options. If, for
example, you have asked for age, a list going from 1 to 90 with different ages and frequencies, will
probably not be so helpful.

If you have many options in the scale variable, the data is often binned (e.g. 0 < 10, 10 < 20, etc.),
which creates then an ordinal variable, of which a frequency table can then be helpful. See binning
for more information on this.

A frequency table can show different types of frequencies. Various options are discussed in the
details.

A YouTube video with explanation on this test is available here

Usage

tab_frequency(data, order = NULL)

Arguments

data A vector or dataframe

order optional list with order of the categories

https://youtu.be/DPmwWxYYCp4
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Details

The column Frequency shows how many respondents answered each option. We can tell that
100 people in this survey chose the option ’very scientific’. This is also known as the absolute
frequency and defined as “the number of occurrences of a particular phenomenon” (Zedeck, “Fre-
quency”, 2014, p. 144).

The Percent column shows the percentages, based on the grand total, so including the missing
values. Percentages can be defined as “a way of expressing ratios in terms of whole numbers. A
ratio or fraction is converted to a percentage by multiplying by 100 and appending a "percentage
sign" %” (Weisstein, 2002, p. 2200).

The Valid Percent shows the percentage, based on the valid total, so excluding the missing values.
Most often the ‘Percent’ shown in reports are actually Valid Percent, but the word ‘Valid’ is then
simply left out.

Percentages show the number of cases that could be expected if there would be 100 cases in total,
hence per-cent which means ’per 100’. If your sample size is very small, be careful about using
percentages. If it is less than 100, it means that you are ’blowing up’ your differences, while
percentages are more commonly used to ’scale down’.

The term relative frequency is also sometimes used. This is the frequency divided by the total
number of cases. Note that this should then always produce a decimal value between 0 and 1
(inclusive). Multiply this by 100 and you get the percentage, multiply it by 1000 and you get
permille (‰), multiply it by 360 and you get the degrees of a circle, etc.

In general the formula for a percentage is:

PRi =
Fi

n
× 100

Symbols used:

• PRi the percentage of category i

• Fi the (absolute) frequency of category i

• n the sample size, i.e. the sum of all frequencies (either including or excluding the missing
values)

The cumulative frequency (not shown in table) can be defined as: “the total (absolute) frequency
up to the upper boundary of that class” (Kenney, 1939, p. 16). This would only be useful if there is
an order to the categories, so we can say that for example 299 respondents found accounting pretty
scientific or even more. Which is why these cumulative frequencies will not have a meaningful
interpretation for a nominal variable (e.g. 28 students study business or less?).

The Cumulative Percent is the running total of the Valid Percent, it is the addition of all previous
and the current category’s valid percentages.

The cumulative frequency can be calculated using:

CFi =

i∑
j=1

Fj

Or using recursion:
CFi = Fi + CFi−1

For the cumulative percent the same formulas as for cumulative frequency can be used, but replacing
Fi with PRi. It can also be determined using the cumulative frequency:

CPRi =
CFi

n
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When the categories are ranges of values (bins), the frequency density could become helpful. It can
be defined as: “the number of occurrences of an event divided by the bin size. . . ” (Zedeck, 2014,
pp. 144–145). See the binned tables for more information about this.

Value

Dataframe with the folowing columns:

index the categories
frequency the absolute count
percent the percentage based on the total including missing values
valid percent the percentage based on the total excluding missing values, only if missing val-

ues are present
cumulative percent

the cumulative percentages

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Kenney, J. F. (1939). Mathematics of statistics; Part one. Chapman & Hall.

Warne, R. T. (2017). Statistics for the social sciences: A general linear model approach. Cambridge
University Press.

Weisstein, E. W. (2002). CRC concise encyclopedia of mathematics (2nd ed.). Chapman & Hall/CRC.

Zedeck, S. (Ed.). (2014). APA dictionary of statistics and research methods. American Psycholog-
ical Association.

Examples

#Example 1: dataframe
dataFile = "https://peterstatistics.com/Packages/ExampleData/GSS2012a.csv"
df1 <- read.csv(dataFile, sep=",", na.strings=c("", "NA"))
ex1 = df1['mar1']
tab_frequency(ex1)

#Example 2: Text data with specified order
myOrder = c("MARRIED", "DIVORCED", "NEVER MARRIED", "SEPARATED", "WIDOWED")
tab_frequency(df1['mar1'], order=myOrder)

#Example 3: Numeric data
ex3 = c(1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5)
tab_frequency(ex3)

#Example 4: Ordinal data
ex4a = c(1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, "NaN")
myOrder = c("fully disagree"=1, "disagree"=2, "neutral"=3, "agree"=4, "fully agree"=5)
tab_frequency(ex4a, order=myOrder)

ex4b = df1['accntsci']
myOrder = c("Not scientific at all", "Not too scientific", "Pretty scientific", "Very scientific")
tab_frequency(ex4b, order=myOrder)

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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tab_frequency_bins Binned Frequency Table

Description

Bins data and creates a frequency table with frequency density.

This function is shown in this YouTube video and frequency tables are also described at PeterStatis-
tics.com

Usage

tab_frequency_bins(
data,
nbins = "sturges",
bins = NULL,
incl_lower = TRUE,
adjust = 1

)

Arguments

data list or dataframe

nbins optional, either the number of bins to create, or a specific method from the
tab_nbins() function. Default is "sturges"

bins optional dataframe with lower and upper bounds

incl_lower optional boolean, to include the lower bound, otherwise the upper bound is in-
cluded. Default is True

adjust optional value to add or subtract to guarantee all scores will fit in a bin

Value

dataframe with:

lower bound lower bound of class

upper bound upper bound of class

frequency count of scores in bin
frequency density

count divided by bin range

Before, After and Alternatives

Before this you might want to determine the number of bins you use: tab_nbins, to determine the
number of bins.

After this you might want to visualise the result: vi_boxplot_single, for a Box (and Whisker)
Plot. vi_histogram, for a Histogram. vi_stem_and_leaf, for a Stem-and-Leaf Display.

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

https://youtu.be/-1kJrdDkImI
https://peterstatistics.com/Terms/Tables/FrequencyTable.html
https://peterstatistics.com/Terms/Tables/FrequencyTable.html
https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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Examples

file2 = 'https://peterstatistics.com/Packages/ExampleData/StudentStatistics.csv'
df2 = read.csv(file2, sep=';', na.strings=c("", "NA"))
#Example 1: Numeric Dataframe
ex1a = df2['Gen_Age']
tab_frequency_bins(ex1a)

ex1b = df2['Gen_Age']
myBins = data.frame(c(0, 20, 25, 30), c(20, 25, 30, 120))
tab_frequency_bins(ex1b, bins=myBins)

#Example 2: Numeric list
ex2 = c(1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5)
tab_frequency_bins(ex2, adjust=0.1)

tab_nbins Number of Bins

Description

To decide on the appropriate number of bins, many different rules can be applied. This function
will determine the number of bins, based on the chosen method.

This function is shown in this YouTube video and binning is described at PeterStatistics.com

Usage

tab_nbins(data, method = "src", adjust = 1, maxBins = NULL, qmethod = "cdf")

Arguments

data vector or dataframe

method optional to indicate the method to use. Either "src", "sturges", "qr", "rice", "ts",
"exp", "velleman", "doane", "scott", "fd", "shinshim", "stone", or "knuth"

adjust optional adjustment to upper bound to guarantee all scores will fit in range.

maxBins optional for in iterations with "shinshim", "stone" and "knuth"

qmethod optional quartile method calculation to use for IQR when "fd" is used. See
me_quartiles for options

Details

The first few methods are determining the number of bins (k) using the sample size (n).

Square Root Choice (src)
This method uses (unknown source):

k = ⌈
√
n⌉

Sturges Choice (sturges)
This method uses (Sturges, 1926, p. 65):

k = ⌈log2 (n)⌉+ 1

https://youtu.be/Hm4An1bsRkw
https://peterstatistics.com/Terms/Tables/Binning.html
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Quartic Root (qr)
This method uses (anonymous, as cited in Lohaka, 2007, p. 87):

k = ⌈2.5× 4
√
n⌉

Rice Rule (rice)
This method uses (Lane, n.d., p. 85):

k = ⌈2× 3
√
n⌈

Terrell and Scotte (ts)
This method uses (Terrell & Scott, 1985, p. 212):

k = ⌈ 3
√
2× n⌉

Exponential (exp)
This method uses (Iman & Conover, 1989, p. 54):

k = ⌈log2 (n)⌉

Velleman (velleman)
This method uses (Velleman, 1976 as cited in Lohaka, 2007, p. 89):

k =

{
⌈2×

√
n⌉ if n ≤ 100

⌈10× log10 (n)⌉ if n > 100

Doane (doane)
This method uses (Doane, 1976, pp. 181-182):

k = 1 + ⌈log2 (n) + log2

(
1 +

|g1|
σg1

)
⌉

In the formula’s g1 is the 3rd moment skewness:

g1 =

∑n
i=1 (xi − x̄)

3

n× σ3
=

1

n
×

n∑
i=1

(
xi − x̄

σ

)3

With:

σ =

√∑n
i=1 (xi − x̄)

2

n

The σg1 is defined using the formula:

σg1 =

√
6× (n− 2)

(n+ 1) (n+ 3)

Next are methods that determine the bin sizes (h), which can then be used to determine the number
of bins (k) using:

k = ⌈max (x)− min (x)
h

⌉

Scott (scott)
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This method uses (Scott, 1979, p. 608):

h =
3.49× s

3
√
n

Where s is the sample standard deviation:

s =

√∑n
i=1 (xi − x̄)

2

n− 1

Freedman and Diaconis (fd)

This method uses (Freedman & Diaconis, 1981, p. 3):

h = 2× IQR (x)
3
√
n

Where IQR is the inter-quartile range.

The last three methods all minimize a cost function (or maximize a profit function). They make use
of the following steps:

1. Divide the data into k bins and count the frequency in each bin

2. Compute the cost function

3. Repeat the first two steps while changing k, until a k is found that minimizes the cost function

Shimazaki and Shinomoto (shinshim)

This method uses as a cost function (Shimazaki & Shinomoto, 2007, p. 1508):

Ck =
2× f̄k − σfk

h2

With f̄k being the average of the frequencies when using k bins, and σfk the population variance.
In formula notation:

f̄k =

∑k
i=1 fi,k
k

σfk =

∑k
i=1

(
fi,k − f̄k

)2
k

Where fi,k is the frequency of the i-th bin when using k bins.

Stone (stone)

This method uses as a cost function (Stone, 1984, p. 3):

Ck =
1

h
×

(
2

n− 1
− n+ 1

n− 1
×

k∑
i=1

(
fi
n

)2
)

Knuth (knuth)

This method uses as a profit function (Knuth, 2019, p. 8):

Pk = n× ln (k) + lnΓ

(
k

2

)
− k × ln Γ

(
1

2

)
− ln Γ

(
n+

k

2

)
+

k∑
i=1

ln Γ

(
fi +

1

2

)
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Value

k : integer with optimum number of bins according to chosen method

Before, After and Alternatives

After this you might want to create a binned frequency table: tab_frequency_bins, to create a
binned frequency table.

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Doane, D. P. (1976). Aesthetic frequency classifications. The American Statistician, 30(4), 181–183.
https://doi.org/10.2307/2683757

Freedman, D., & Diaconis, P. (1981). On the histogram as a density estimator. Zeitschrift Für
Wahrscheinlichkeitstheorie Und Verwandte Gebiete, 57(4), 453–476. https://doi.org/10.1007/BF01025868

Iman, R. L., & Conover, W. J. (1989). Modern business statistics (2nd ed.). Wiley.

Knuth, K. H. (2019). Optimal data-based binning for histograms and histogram-based probability
density models. Digital Signal Processing, 95, 1–30. https://doi.org/10.1016/j.dsp.2019.102581

Lohaka, H. O. (2007). Making a grouped-data frequency table: Development and examination of
the iteration algorithm [Doctoral dissertation, Ohio University]. https://etd.ohiolink.edu

Scott, D. W. (1979). On optimal and data-based histograms. Biometrika, 66(3), 605–610. https://doi.org/10.1093/biomet/66.3.605

Shimazaki, H., & Shinomoto, S. (2007). A method for selecting the bin size of a time histogram.
Neural Computation, 19(6), 1503–1527. https://doi.org/10.1162/neco.2007.19.6.1503

Stone, C. J. (1984). An asymptotically optimal window selection rule for kernel density estimates.
The Annals of Statistics, 12(4), 1285–1297.

Sturges, H. A. (1926). The choice of a class interval. Journal of the American Statistical Associa-
tion, 21(153), 65–66. https://doi.org/10.1080/01621459.1926.10502161

Terrell, G. R., & Scott, D. W. (1985). Oversmoothed nonparametric density estimates. Journal of
the American Statistical Association, 80(389), 209–214. https://doi.org/10.2307/2288074

Examples

#Example 1
dataFile = "https://peterstatistics.com/Packages/ExampleData/GSS2012a.csv"
df1 <- read.csv(dataFile, sep=",", na.strings=c("", "NA"))
ex1 = df1['age']
ex1 = replace(ex1, ex1=="89 OR OLDER", "90")
tab_nbins(ex1)

#Example 2
file2 = 'https://peterstatistics.com/Packages/ExampleData/StudentStatistics.csv'
df2 = read.csv(file2, sep=';', na.strings=c("", "NA"))
ex2 = df2['Gen_Age']
tab_nbins(ex2)

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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th_cle Rule-of-Thumb for Common Language Effect Size

Description

This function will give a qualification (classification) for a Common Language Effect Size (/ Vargha-
Delaney A / Probability of Superiority)

The measure is also described at PeterStatistics.com

Usage

th_cle(cle, qual = "vd", convert = "no")

Arguments

cle the Vargha-Delaney A value
qual "vd", others via convert, optional rules-of-thumb to use, currently only ’vd’ for

Vargha-Delaney, otherwise a converted measure
convert "no", "rb", "cohen_d", optional list in case to use a rule-of-thumb from a con-

verted measure. Either "no" for no conversion, "rb" for rank-biserial, or "co-
hen_d" for Cohen d.

Details

Vargha and Delaney (2000, p. 106):

|0.5 - A| Interpretation
0.00 < 0.06 negligible
0.11 < 0.14 small
0.28 < 0.21 medium
0.21 or more large

The CLE can be converted to a Rank Biserial Coefficient using:

rb = 2× CLE − 1

Rules of thumb from the th_rank_biserial() function could then be used, by setting: convert="rb",
and qual is any of the options in th_rank_biserial()

This in turn can be converted to Cohen’s d using (Marfo & Okyere, 2019, p.4):

d = 2× ϕ−1

(
− 1

rb − 2

)
Rules of thumb from the th_cohen_d() function could then be used, by setting: convert="cohen_d",
and qual is any of the options in th_cohen_d()

Value

A dataframe with:

classification the qualification of the effect size
reference a reference for the rule of thumb used

https://peterstatistics.com/Terms/EffectSizes/CommonLanguageEffectSize.html
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Before, After and Alternatives

Before this you might want to obtain the measure: es_common_language_os, o determine the CLE
for one-sample. es_common_language_is, o determine the CLE for independent samples.

The function uses the convert function and corresponding rules of thumb: es_convert, for the
conversions. th_rank_biserial, for options for rules of thumb when converting to Rank Biserial.
th_cohen_d, for options for rules of thumb when converting to Cohen d.

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Marfo, P., & Okyere, G. A. (2019). The accuracy of effect-size estimates under normals and con-
taminated normals in meta-analysis. Heliyon, 5(6), e01838. doi:10.1016/j.heliyon.2019.e01838

Vargha, A., & Delaney, H. D. (2000). A critique and improvement of the CL common language
effect size statistics of McGraw and Wong. Journal of Educational and Behavioral Statistics, 25(2),
101–132. doi:10.3102/10769986025002101

Examples

# Example 1: Using Vargha and Delaney rules:
cle = 0.23
th_cle(cle)

# Example 2: Convert to rank-biserial and use Sawilowsky rules:
cle = 0.23
th_cle(cle, qual="sawilowsky", convert="rb")

th_cohen_d Rules of Thumb for Cohen d

Description

This function will give a qualification (classification) for Cohen d

Usage

th_cohen_d(d, qual = "sawilowsky")

Arguments

d the Cohen d value

qual optional the rule of thumb to be used. Either "sawilowsky" (default), "brydges",
cohen", "rosenthal", or "lovakov"

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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Details

The following rules-of-thumb can be used:

"brydges" => Brydges (2019, p. 5):

\|d\| Interpretation
0.00 < 0.15 negligible
0.15 < 0.40 small
0.40 < 0.75 medium
0.75 or more large

"cohen" => Cohen (1988, p. 40)

|d| Interpretation
0.00 < 0.20 negligible
0.20 < 0.50 small
0.50 < 0.80 medium
0.80 or more large

"sawilowsky" => Sawilowsky (2009, p. 599)

|d| Interpretation
0.00 < 0.10 negligible
0.10 < 0.20 very small
0.20 < 0.50 small
0.50 < 0.80 medium
0.80 < 1.20 large
1.20 < 2.00 very large
2.00 or more huge

"lovakov" => Lovakov and Agadullina (2021, p. 501)

|d| Interpretation
0.00 < 0.15 negligible
0.15 < 0.36 small
0.36 < 0.65 medium
0.65 or more large

"rosenthal" => Rosenthal (1996, p. 45)

|d| Interpretation
0.00 < 0.20 negligible
0.20 < 0.50 small
0.50 < 0.80 medium
0.80 < 1.30 large
0.80 or more very large
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Value

A dataframe with:

classification the qualification of the effect size

reference a reference for the rule of thumb used

Before, After and Alternatives

Cohen d for one-sample and Hedges g could be converted to Cohen d: es_convert, for the conver-
sions. es_cohen_d, to determine Cohen d’ es_hedges_g_os, for Hedges g

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Brydges, C. R. (2019). Effect size guidelines, sample size calculations, and statistical power in
gerontology. Innovation in Aging, 3(4), 1–8. doi:10.1093/geroni/igz036

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). L. Erlbaum
Associates.

Lovakov, A., & Agadullina, E. R. (2021). Empirically derived guidelines for effect size interpreta-
tion in social psychology. European Journal of Social Psychology, 51(3), 485–504. doi:10.1002/ejsp.2752

Rosenthal, J. A. (1996). Qualitative descriptors of strength of association and effect size. Journal
of Social Service Research, 21(4), 37–59. doi:10.1300/J079v21n04_02

Sawilowsky, S. (2009). New effect size rules of thumb. Journal of Modern Applied Statistical
Methods, 8(2). doi:10.22237/jmasm/1257035100

Examples

es = 0.6
th_cohen_d(es)

th_cohen_f Rule-of-Thumb for Cohen f

Description

Simple function to use a rule-of-thumb for the Cohen f effect size.

Usage

th_cohen_f(f, qual = "cohen")

Arguments

f the Cohen f value

qual optional setting for which rule of thumb to use. Currently only "cohen"

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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Details

Cohen’s rule of thumb for Cohen f (1988, pp. 285-287):

|f| Interpretation
0.00 < 0.10 negligible
0.10 < 0.25 small
0.25 < 0.40 medium
0.40 or more large

Value

A dataframe with:

classification the qualification of the effect size

reference a reference for the rule of thumb used

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). L. Erlbaum
Associates.

See Also

es_cohen_f, to determine Cohen f

r_rosenthal, to determine the Rosenthal correlation, which Cohen called also Cohen f

th_cohen_g Rule-of-Thumb for Cohen g

Description

Simple function to use a rule-of-thumb for the Cohen g effect size.

This function is shown in this YouTube video and the effect size is also described at PeterStatis-
tics.com

Usage

th_cohen_g(g, qual = "cohen")

Arguments

g the Cohen g value

qual optional setting for which rule of thumb to use. Currently only "cohen"

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
https://youtu.be/3DEmngmws2U
https://peterstatistics.com/Terms/EffectSizes/CohenG.html
https://peterstatistics.com/Terms/EffectSizes/CohenG.html
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Details

Cohen’s rule of thumb for Cohen g (1988, pp. 147-149):

|g| Interpretation
0.00 < 0.05 negligible
0.05 < 0.15 small
0.15 < 0.25 medium
0.25 or more large

Value

A dataframe with:

classification the qualification of the effect size

reference a reference for the rule of thumb used

Before, After and Alternatives

es_cohen_g, to determine Cohen g

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). L. Erlbaum
Associates.

Examples

es = 0.6
th_cohen_g(es)

th_cohen_h Rule-of-Thumb for Cohen h

Description

Simple function to use a rule-of-thumb for the Cohen h effect size.

This function is shown in this YouTube video and the effect size is also described at PeterStatis-
tics.com

Usage

th_cohen_h(h, qual = "cohen")

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
https://youtu.be/sGfFB7Zzeas
https://peterstatistics.com/Terms/EffectSizes/CohenH.html
https://peterstatistics.com/Terms/EffectSizes/CohenH.html
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Arguments

h the Cohen h value

qual optional setting for which rule of thumb to use. Currently only ’cohen’

Details

Cohen’s rule of thumb for Cohen g (1988, p. 198):

|h| Interpretation
0.00 < 0.20 negligible
0.20 < 0.50 small
0.50 < 0.80 medium
0.80 or more large

Note that Cohen actually just lists small = 0.20, medium = 0.50, and large = 0.80.

Value

A dataframe with:

classification the qualification of the effect size

reference a reference for the rule of thumb used

Before, After and Alternatives

es_cohen_h, to determine Cohen h es_cohen_h_os, to determine Cohen h’, then use es_convert

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). L. Erlbaum
Associates.

Examples

es = 0.6
th_cohen_d(es)

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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th_cohen_w Rule-of-Thumb for Cohen w

Description

Simple function to use a rule-of-thumb for the Cohen w effect size.
The measure is also described at PeterStatistics.com

Usage

th_cohen_w(w, qual = "cohen")

Arguments

w the Cohen w value
qual optional setting for which rule of thumb to use. Currently only ’cohen’

Details

Cohen’s rule of thumb for Cohen w (1988, p. 227):

|w| Interpretation
0.00 < 0.10 negligible
0.10 < 0.30 small
0.30 < 0.50 medium
0.50 or more large

Value

A dataframe with:

classification the qualification of the effect size
reference a reference for the rule of thumb used

Before, After and Alternatives

Before using this function you need to obtain a Cohen w value: es_cohen_w, to determine Cohen
w

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). L. Erlbaum
Associates.

Examples

es = 0.6
th_cohen_w(es)

https://peterstatistics.com/Terms/EffectSizes/CohenW.html
https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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th_cramer_v Rule-of-Thumb for Cramér V

Description

Simple function to use a rule-of-thumb for the Cramér V effect size. Note however that many will
actually use the rule-of-thumb for Cohen w and convert Cramér V to Cohen w first.

The measure is also described at PeterStatistics.com

Usage

th_cramer_v(v, qual = "rea-parker")

Arguments

v the Cramér V value

qual optional setting for which rule of thumb to use. Either "rea-parker" (default),
"akoglu", "calamba-rustico"

Details

"rea-parker" => Uses Rea and Parker (1992, p. 203):

\|v\| Interpretation
0.00 < 0.10 negligible
0.10 < 0.20 weak
0.20 < 0.40 moderate
0.40 < 0.60 relatively strong
0.60 < 0.80 strong
0.80 or more very strong

"akoglu" => Uses Akoglu (2018, p. 92):

\|v\| Interpretation
0.00 < 0.05 very weak
0.05 < 0.10 weak
0.10 < 0.15 moderate
0.15 < 0.25 strong
0.25 or more very strong

"calamba-rustico" => Uses Calamba and Rustico (2019, p. 7):

\|v\| Interpretation
0.00 < 0.15 very weak
0.15 < 0.20 weak
0.20 < 0.25 moderate
0.25 < 0.30 moderately strong
0.30 < 0.35 strong

https://peterstatistics.com/Terms/EffectSizes/CramerV.html
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0.35 < 0.50 worrisomely strong
0.50 or more redundant

Note that the original source has a gap from 0.40 < 0.50, I added this to the ’worrisomely strong’
category.

Value

A dataframe with:

classification the qualification of the effect size

reference a reference for the rule of thumb used

Before, After and Alternatives

Before using this function you need to obtain a Cramer v value: es_cramer_v_gof, to determine
Cramér V for a Goodness-of-Fit test. es_cramer_v_ind, to determine Cramér V for a test of
independence.

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Akoglu, H. (2018). User’s guide to correlation coefficients. Turkish Journal of Emergency Medicine,
18(3), 91–93. doi:10.1016/j.tjem.2018.08.001

Calamba, S. S., & Rustico, E. M. P. (2019). Usefulness of code of ethics for professional accoun-
tants in resolving ethical conflicts in the Philippines.

Rea, L. M., & Parker, R. A. (1992). Designing and conducting survey research: A comprehensive
guide. Jossey-Bass Publishers.

Examples

es = 0.6
th_cramer_v(es)

th_kaiser_b Rule-of-Thumb for Kaiser b

Description

Simple function to use a rule-of-thumb for the Kaiser b variation measure.

Usage

th_kaiser_b(b, qual = "kaiser")

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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Arguments

b the Cohen b value

qual optional setting for which rule of thumb to use. Currently only "kaiser"

Details

Kaiser’s rule of thumb for Kaiser b (1968, p. 212):

|b| Interpretation
0.00 < 0.70 terrible
0.70 < 0.80 poor
0.80 < 0.90 fair
0.90 < 0.95 good
0.95 < 1.00 excellent

Value

A dataframe with:

classification the qualification of the effect size

reference a reference for the rule of thumb used

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Kaiser, H. F. (1968). A measure of the population quality of legislative apportionment. American
Political Science Review, 62(1), 208–215. doi:10.2307/1953335

See Also

me_qv, to determine Kaiser b

th_odds_ratio Rules of thumb for Odds Ratio

Description

This function will give a qualification (classification) for a given Odds Ratio

Usage

th_odds_ratio(or, qual = "chen")

Arguments

or the odds ratio

qual optional rule of thumb to use. Either "chen" (default), "wuensch", "jones1",
"jones2", or "hopkins"

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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Details

If the OR is less than 1, the alternative is used, i.e. 1/OR.

"chen" => Chen et al. (2010, p. 864)

OR Interpretation
1.00 < 1.68 negligible
1.68 < 3.47 weak
3.47 < 6.71 moderate
6.71 or more strong

"hopkins" => Hopkins (1997, tbl. 1)

\(OR^\ast\) Interpretation
1.00 < 1.50 trivial
1.50 < 3.50 small
3.50 < 9.00 moderate
9.00 < 32.0 large
32.0 < 360 very large
360 or more nearly perfect

"jones1" => Jones (2014)

OR Interpretation
1.00 < 1.5 negligible
1.5 < 2.5 small
2.5 < 4.3 medium
4.3 or more large

"jones2" => Jones (2014)

OR Interpretation
1.00 < 1.5 negligible
1.5 < 3.5 small
2.5 < 9.0 medium
9.0 or more large

"wuensch" => Wuensch (2009, p. 2)

OR Interpretation
1.00 < 1.49 negligible
1.49 < 3.45 small
3.45 < 9 medium
9 or more large
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Value

Dataframe with:

classification the qualification of the effect size

reference a reference for the rule of thumb used

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Chen, H., Cohen, P., & Chen, S. (2010). How big is a big Odds Ratio? Interpreting the magni-
tudes of Odds Ratios in epidemiological studies. Communications in Statistics - Simulation and
Computation, 39(4), 860–864. doi:10.1080/03610911003650383

Hopkins, W. G. (2006, August 7). New view of statistics: Effect magnitudes. http://www.sportsci.org/resource/stats/effectmag.html

Jones, K. (2014, June 5). How do you interpret the odds ratio (OR)? ResearchGate. https://www.researchgate.net/post/How_do_you_interpret_the_odds_ratio_OR

Wuensch, K. (2009). Cohen’s conventions for small, medium, and large effects. https://imaging.mrc-
cbu.cam.ac.uk/statswiki/FAQ/effectSize?action=AttachFile&do=get&target=esize.doc

Examples

th_odds_ratio(5.23)
th_odds_ratio(5.23, qual="wuensch")

th_pearson_r Rules of Thumb for Pearson Correlation Coefficient

Description

This function will give a qualification (classification) to a given correlation coefficient

Usage

th_pearson_r(r, qual = "bartz")

Arguments

r the correlation coefficient

qual optional the rule of thumb to be used. Either "bartz" (default), "agnes",
"brydges", "cohen", "disha", "funder", "hopkins", "lovakov", "rafter",
"rea", "rosenthal", "rumsey", "gignac", or "hemphill"

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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Details

The following rules-of-thumb can be used:

"agnes" => Agnes (2011)

|r| Interpretation
0.00 < 0.20 negligible
0.20 < 0.40 low
0.40 < 0.60 moderate
0.60 < 0.80 marked
0.80 or more high

"bartz" => Bartz (1988, p. 199)

|r| Interpretation
0.00 < 0.20 very low
0.20 < 0.40 low
0.40 < 0.60 moderate
0.60 < 0.80 strong
0.80 or more very high

"brydges" => Brydges (2019, p. 5) =

"gignac" => Gignac and Szodorai (2016, p. 75) =

"hemphill" => Hemphill (2003, p. 78)

|r| Interpretation
0.00 < 0.10 negligible
0.10 < 0.20 small
0.20 < 0.30 medium
0.30 or more large

"cohen" => Cohen (1988, p. 82)

|r| Interpretation
0.00 < 0.20 negligible
0.20 < 0.50 small
0.50 < 0.80 medium
0.80 or more large

"disha" => Disha (2016)

|r| Interpretation
0.00 < 0.10 markedly low and negligible
0.10 < 0.30 very low
0.30 < 0.50 low
0.50 < 0.70 moderate
0.70 < 0.90 high
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0.90 or more very high

"funder" => Funder and Ozer (2019, p. 166)

|r| Interpretation
0.00 < 0.05 negligible
0.05 < 0.10 very small
0.10 < 0.20 small
0.20 < 0.30 medium
0.30 < 0.40 large
0.40 or more very large

"hopkins" => Hopkins (2006, tbl. 1)

|r| Interpretation
0.00 < 0.10 trivial
0.10 < 0.30 low
0.30 < 0.50 moderate
0.50 < 0.70 high
0.70 < 0.90 very large
0.90 or more nearly perfect

"lovakov" => Lovakov and Agadullina (2021, p. 514)

|r| Interpretation
0.00 < 0.12 negligible
0.12 < 0.24 small
0.24 < 0.41 medium
0.41 or more large

"rafter" => Rafter et al. (2003, p. 194)

|r| Interpretation
0.00 < 0.25 weak
0.25 < 0.75 moderate
0.75 or more strong

"rea" => Rea and Parker (2014, pp. 229, 271)

|r| Interpretation
0.00 < 0.10 negligible
0.10 < 0.30 low
0.30 < 0.60 moderate
0.60 < 0.75 strong
0.75 or more very strong
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"rosenthal" => Rosenthal (1996, p. 45)

|r| Interpretation
0.00 < 0.10 negligible
0.10 < 0.30 small
0.30 < 0.50 medium
0.50 < 0.70 large
0.70 or more very large

"rumsey" => Rumsey (2011, p. 284)

|r| Interpretation
0.00 < 0.30 negligible
0.30 < 0.50 weak
0.50 < 0.70 moderate
0.70 or more strong

Value

A dataframe with:

classification the qualification of the effect size

reference a reference for the rule of thumb used

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Agnes. (2011, April 16). Correlation – Correlation coefficient, r. Finance Training Course.
https://financetrainingcourse.com/education/2011/04/correlation-correlation-coefficient-r/

Bartz, A. E. (1988). Basic statistical concepts (3rd ed.). Macmillan.

Brydges, C. R. (2019). Effect size guidelines, sample size calculations, and statistical power in
gerontology. Innovation in Aging, 3(4), 1–8. doi:10.1093/geroni/igz036

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). L. Erlbaum
Associates.

Disha, M. (2016, November 3). Correlation: Meaning, types and its computation. Your Article Li-
brary. https://www.yourarticlelibrary.com/statistics-2/correlation-meaning-types-and-its-computation-
statistics/92001

Funder, D. C., & Ozer, D. J. (2019). Evaluating effect size in psychological research: Sense and
nonsense. Advances in Methods and Practices in Psychological Science, 2(2), 156–168. doi:10.1177/2515245919847202

Gignac, G. E., & Szodorai, E. T. (2016). Effect size guidelines for individual differences re-
searchers. Personality and Individual Differences, 102, 74–78. doi:10.1016/j.paid.2016.06.069

Hemphill, J. F. (2003). Interpreting the magnitudes of correlation coefficients. American Psycholo-
gist, 58(1), 78–79. doi:10.1037/0003-066X.58.1.78

Hopkins, W. G. (2006, August 7). New view of statistics: Effect magnitudes. http://www.sportsci.org/resource/stats/effectmag.html

https://PeterStatistics.com
https://www.youtube.com/stikpet
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Lovakov, A., & Agadullina, E. R. (2021). Empirically derived guidelines for effect size interpreta-
tion in social psychology. European Journal of Social Psychology, 51(3), 485–504. doi:10.1002/ejsp.2752

Rafter, J. A., Abell, M. L., & Braselton, J. P. (2003). Statistics with Maple. Academic Press.

Rea, L. M., & Parker, R. A. (2014). Designing and conducting survey research: A comprehensive
guide (4th ed.). Jossey-Bass, a Wiley brand.

Rosenthal, J. A. (1996). Qualitative descriptors of strength of association and effect size. Journal
of Social Service Research, 21(4), 37–59. doi:10.1300/J079v21n04_02

Rumsey, D. J. (2011). Statistics for dummies (2nd ed.). Wiley.

See Also

r_pearson, to determine Pearson correlation coefficient or

r_rosenthal, to determine Rosenthal correlation coefficient

Examples

es = 0.6
th_pearson_r(es)

th_post_hoc_gof Post-Hoc Goodness-of-Fit Rules-of-Thumb

Description

This function will add a classification to the results of es_post_hoc_gof() using a rules-of-thumb.
This is frowned upon by some, and the rule-of-thumb can vary per discipline.

Usage

th_post_hoc_gof(eff_sizes, convert = FALSE, ph_results = NULL, ...)

Arguments

eff_sizes dataframe, the dataframe from es_post_hoc_gof()

convert boolean, optional. convert the effect size to use the rule-of-thumb from another,
see details

ph_results dataframe, optional. the post-hoc analysis results, required for JBM-E and Fei.

... optional. additional arguments for the specific rule-of-thumb that are passed
along. Most common ’qual=...’ for a specific set of rules-of-thumb.

Details

For Johnston-Berry-Mielke E and Fei, a conversion is always done to Cramér V, when setting con-
vert=True it will convert it again to Cohen w.

Other possible conversions are Cohen h’ to Cohen h, and Cramér V to Cohen w.

See the separate documentation for each of the rules-of-thumb, or conversion.
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Value

df, dataframe with the same dataframe as the provided eff_sizes, but added:

qualification , the qualification using the rule-of-thumb.

reference , a reference to the source for the rule-of-thumb.

If a conversion was done or needed:

conversion description

, the value of the converted measure

Before, After and Alternatives

Before using this the post-hoc effect sizes need to be made: es_post_hoc_gof, to obtain post-hoc
effect sizes.

Depending on the measure, the function will use the rules of thumb for: th_cohen_g, for Cohen g.
th_cohen_h, for Cohen h. th_cohen_w, for Cohen w. th_cramer_v, for Cramer V. th_pearson_r,
for Pearson r.

It can also convert using: es_convert, to convert various effect sizes.

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

th_rank_biserial Rule-of-Thumb for Rank Biserial Correlation

Description

Simple function to use a rule-of-thumb for the Rank Biserial Correlation.

This function is shown in this YouTube video and the measure is also described at PeterStatis-
tics.com

Usage

th_rank_biserial(rb, qual = "cohen")

Arguments

rb the rank-biserial correlation value

qual optional setting for which rule of thumb to use. Either "cohen" (default), "vd",
"sawilowsky", "cohen-conv", "lovakov", "rosenthal", "brydges"

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
https://youtu.be/31jr7jUCni4
https://peterstatistics.com/Terms/Correlations/RankBiserialCorrelation.html
https://peterstatistics.com/Terms/Correlations/RankBiserialCorrelation.html
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Details

Cohen’s rule of thumb for rank-biserial correlation (1988, p. 82):

|r_b| Interpretation
0.000 < 0.125 negligible
0.125 < 0.304 small
0.304 < 0.465 medium
0.465 or more large

Vargha and Delaney (2000, p. 106):

|r_b| Interpretation
0.00 < 0.11 negligible
0.11 < 0.28 small
0.28 < 0.43 medium
0.43 or more large

Value

A dataframe with:

classification the qualification of the effect size

reference a reference for the rule of thumb used

Before, After and Alternatives

Before this you might want to obtain the measure: r_rank_biserial_is, to determine a the rank
biserial for independent samples. r_rank_biserial_os, to determine a the rank biserial for one-
sample.

The function uses the convert function and corresponding rules of thumb: es_convert, to convert
this to Cohen d. th_cohen_d, rules of thumb for Cohen d.

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). L. Erlbaum
Associates.

Examples

# Example 1: using Cohen's rules:
rb = 0.6
th_rank_biserial(rb)

# Example 2: Convert to Cohen d, then use Cohen d rules:
rb= 0.23
th_rank_biserial(rb, qual="cohen-conv")

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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th_yule_q Rules of thumb for Yule Q

Description

Simple function to use a rule-of-thumb for Yule Q effect size.

Usage

th_yule_q(q, qual = "glen")

Arguments

q the Yule Q value

qual optional for which rule-of-thumb to use. Currently only "glen"

Details

Glen rule of thumb for Yule Q (2017):

|Q| Interpretation
0.00 < 0.30 negligible
0.30 < 0.50 moderate
0.50 < 0.70 substantial
0.70 or more very strong

Value

A dataframe with:

classification the qualification of the effect size

reference a reference for the rule of thumb used

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Glen, S. (2017, August 16). Gamma Coefficient (Goodman and Kruskal’s Gamma) & Yule’s Q.
Statistics How To. https://www.statisticshowto.com/gamma-coefficient-goodman-kruskal/

See Also

es_bin_bin, to determine Yule Q

Examples

q = 0.6
th_yule_q(q)

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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ts_alexander_govern_owa

Alexander-Govern Test

Description

Tests if the means (averages) of each category could be the same in the population.

If the p-value is below a pre-defined threshold (usually 0.05), the null hypothesis is rejected, and
there are then at least two categories who will have a different mean on the scaleField score in the
population.

Schneider and Penfield (1997) looked at the Welch, Alexander-Govern and the James test (they
ignored the Brown-Forsythe since they found it to perform worse than Welch or James), and con-
cluded: “Under variance heterogeneity, Alexander-Govern’s approximation was not only compara-
ble to the Welch test and the James second-order test but was superior, in certain instances, when
coupled with the power results for those tests” (p. 285).

There are quite some alternatives for this, the stikpet library has Fisher, Welch, James, Box, Scott-
Smith, Brown-Forsythe, Alexander-Govern, Mehrotra modified Brown-Forsythe, Hartung-Agac-
Makabi, Özdemir-Kurt and Wilcox as options. See the notes from ts_fisher_owa() for some discus-
sion on the differences.

Usage

ts_alexander_govern_owa(nomField, scaleField, categories = NULL)

Arguments

nomField the groups variable

scaleField the numeric scores variable

categories vector, optional. the categories to use from catField

Details

The formula used (Alexander & Govern, 1994, pp. 92-94):

A =

k∑
j=1

z2j

df = k − 1

sig. = 1− χ2 (A, df)

With:

zj = cj +
c3j + 3× cj

bj
−

4× c7j + 33× c5j + 240× c3j + 855× cj

10× b2j + 8× bj × c4j + 1000× bj

cj =

√√√√aj × ln

(
1 +

t2j
nj − 1

)

bj = 48× a2j

aj = nj − 1.5
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tj =
x̄j − ȳw√

s2j
nj

ȳw =

k∑
j=1

hj × x̄j

hj =
wj

w

wj =
nj

s2j

w =

k∑
j=1

wj

s2j =

∑nj

i=1 (xi,j − x̄j)
2

nj − 1

x̄j =

∑nj

j=1 xi,j

nj

Symbols:

• n the total sample size
• k the number of categories
• xi,j the i-th score in category j
• nj the sample size of category j
• x̄j the sample mean of category j
• s2j the sample variance of the scores in category j
• df the degrees of freedom
• χ2 (. . . , . . . ) the cumulative distribution function of the chi-square distribution.

Value

A dataframe with:

n the sample size
k the number of categories
statistic the test statistic (chi-square value)
df the degrees of freedom
p-value the significance (p-value)

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Alexander, R. A., & Govern, D. M. (1994). A new and simpler approximation for ANOVA under
variance heterogeneity. Journal of Educational Statistics, 19(2), 91–101. doi:10.2307/1165140

Schneider, P. J., & Penfield, D. A. (1997). Alexander and Govern’s approximation: Providing an
alternative to ANOVA under variance heterogeneity. The Journal of Experimental Education, 65(3),
271–286. doi:10.1080/00220973.1997.9943459

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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ts_bhapkar Bhapkar Test

Description

If you are only interested if the overall distribution changed (i.e. if the percentages from each cate-
gory changed or not), you can perform a marginal homogeneity test. There are two that seem to be
quite popular for this, the Stuart-Maxwell test (Stuart, 1955; Maxwell, 1970), and the Bhapkar test
(Bhapkar, 1961; 1966). According Uebersax (2006) (which also has a nice example) the Bhapkar
one is preferred.

Simply put, a marginal homogeneity test, looks at the row vs column proportions. Since in a paired
test, the options are the same, if the row and column proportions are the same, nothing changed
between the two variables.

Usage

ts_bhapkar(field1, field2, categories = NULL)

Arguments

field1 vector, the first categorical field

field2 vector, the first categorical field

categories vector, optional, order and/or selection for categories of field1 and field2

Details

The formula used is:
χ2
B = n× d′ × S−1 × d

With:
Si,i = pi,. + p.,i − 2× pi,i − (pi,. − p.,i)

2

Si,j = − (pi,j + pj,i)− (pi,. − p.,i)× (pj,. − p.,j)

di = pi,. − p.,i

pi,j =
Fi,j

n

d =


d1
d2
. . .

dr−1



S =


S1,1 S1,2 . . . S1,c−1

S2,1 S2,2 . . . S2,c−1

. . . . . . . . . . . .
Sr−1,1 Sr−1,2 . . . Sr−1,c−1


n =

r∑
i=1

c∑
j=1

Fi,j

The p-value (sig.):
df = r − 1 = c− 1



ts_bhapkar 249

sig. = 1− χ2
(
χ2
B , df

)
Symbols used:

• r, is the number of rows (categories in the first variable)

• c, is the number of columns (categories in the second variable)

• n, is the total number of scores

• Fi,j , is the frequency (count) of scores equal to the i-th category in the first variable, and the
j-th category in the second.

• pi,., The sum of the proportions in row i

• p.,i, The sum of the proportions in column i

• d′, is the transpose of the d vector

• S−1, is the inverse of the S matrix.

• χ2 (. . . ), the cumulative distribution function for the chi-square distribution.

Note

• The d vector and S matrix are one row (and column) less.

• This test only differs from the Stuart-Maxwell test in the calculation of S

• The test was introduced by Bhapkar (1961, 1966)

Value

Dataframe with:

n the sample size

statistic the chi-squared value

df the degrees of freedom used in the test

p-value the significance (p-value)

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Bhapkar, V. P. (1961). Some tests for categorical data. The Annals of Mathematical Statistics, 32(1),
72–83. doi:10.1214/aoms/1177705140

Bhapkar, V. P. (1966). A note on the equivalence of two test criteria for hypotheses in categorical
data. Journal of the American Statistical Association, 61(313), 228–235. doi:10.1080/01621459.1966.10502021

Maxwell, A. E. (1970). Comparing the classification of subjects by two independent judges. The
British Journal of Psychiatry, 116(535), 651–655. doi:10.1192/bjp.116.535.651

Stuart, A. (1955). A test for homogeneity of the marginal distributions in a two-way classification.
Biometrika, 42(3/4), 412–416. doi:10.2307/2333387

Uebersax, J. (2006, August 30). McNemar tests of marginal homogeneity. http://www.john-
uebersax.com/stat/mcnemar.htm
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ts_binomial_os One-Sample Binomial Test

Description

Performs a one-sample (exact) binomial test.

This test can be useful with a single binary variable as input. The null hypothesis is usually that the
proportions of the two categories in the population are equal (i.e. 0.5 for each). If the p-value of the
test is below the pre-defined alpha level (usually 5% = 0.05) the null hypothesis is rejected and the
two categories differ in proportion significantly.

The input for the function doesn’t have to be a binary variable. A nominal variable can also be used
and the two categories to compare indicated.

A significance in general is the probability of a result as in the sample, or more extreme, if the
null hypothesis is true. For a two-tailed binomial test the ’or more extreme’ causes a bit of a
complication. There are different methods to approach this problem. See the details for more
information.

A YouTube video on the binomial test.

This function is shown in this YouTube video and the binomial test is also described at PeterStatis-
tics.com

Usage

ts_binomial_os(
data,
p0 = 0.5,
p0Cat = NULL,
codes = NULL,
twoSidedMethod = c("eqdist", "double", "smallp")

)

Arguments

data A vector with the data

p0 Optional hypothesized proportion for the first category (default is 0.5)

p0Cat Optional the category for which p0 was used

codes Optional vector with the two codes to use

twoSidedMethod Optional method to be used for 2-sided significance (see details)

Details

To decide on which category is associated with p0 the following is used:

• If codes are provided, the first code is assumed to be the category for the p0.

• If p0Cat is specified that will be used for p0 and all other categories will be considered as
category 2, this means if there are more than two categories the remaining two or more (besides
p0Cat) will be merged as one large category.

• If neither codes or p0Cat is specified and more than two categories are in the data a warning
is printed and no results.

https://youtu.be/9OGCi1Q7tBQ
https://youtu.be/hsIBrbHs9lI
https://peterstatistics.com/Terms/Tests/binomial-one-sample.html
https://peterstatistics.com/Terms/Tests/binomial-one-sample.html
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• If neither codes or p0Cat is specified and there are two categories, p0 is assumed to be for the
category closest matching the p0 value (i.e. if p0 is above 0.5 the category with the highest
count is assumed to be used for p0)

For the formulas below it is assumed that the observed proportion is less than the expected pro-
portion, if this isn’t the case, the right-tail probabilities are used. A one sided p-value is calculated
first:

sigone−tail = Bin (n, nmin, p
∗
0)

With:
nmin = min {ns, nf}

p∗0 =

{
p0 if nmin = ns

1− p0 if nmin = nf

Symbols used:

• n is the number of cases
• ns is the number of successes
• nf is the number of failures
• p0 is the probability of a success according to the null hypothesis
• p∗0 is the probability adjusted in case failures is used
• Bin (. . . ) the binomial cumulative distribution function

For the two sided significance three options can be used.

Option 1: Equal Distance Method (twoSidedMethod="eqdist")

sigtwo−tail = B (n, nmin, p
∗
0) + 1−B (n, ⌊2× n0⌋ − nmin − 1, p∗0)

With:
n0 = ⌊n× p0⌋

This method looks at the number of cases. In a sample of n people, we’d then expect n0 = ⌊n× p0⌋
successes (we round the result down to the nearest integer). We only had nmin, so a difference of
n0 − nmin. The ‘equal distance method’ now means to look for the chance of having k or less, and
n0 + n0 − nmin = 2 × n0 − nmin or more. Each of these two probabilities can be found using a
binomial distribution. Adding these two together than gives the two-sided significance.

Option 2: Small p-method (twoSidedMethod="smallp")

sigtwo−tail = B (n, nmin, p
∗
0) +

n∑
i=nmin+1

{
0 if b (n, i, p∗0) > b (n, nmin, p

∗
0)

b (n, i, p∗0) if x ≤ b (n, i, p∗0) > b (n, nmin, p
∗
0)

With: b (. . . ) as the binomial probability mass function.

This method looks at the probabilities itself. b (n, nmin, p
∗
0) is the probability of having exactly

nmin out of a group of n, with a chance p∗0 each time. The method of small p-values now considers
‘or more extreme’ any number between 0 and n (the sample size) that has a probability less or equal
to this. This means we need to go over each option, determine the probability and check if it is
lower or equal. So, the probability of 0 successes, the probability of 1 success, etc. The sum for all
of those will be the two-sided significance. We can reduce the work a little since any value below
nmin , will also have a lower probability, so we only need to sum over the ones above it and add the
one-sided significance to the sum of those.

Option 3: Double single (twoSidedMethod="double")

sigtwo−tail = 2× sigone−tail

Fairly straight forward. Just double the one-sided significance.
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Value

Dataframe with:

pValue two-sided p-value

test a description of the test used

Before, After and Alternatives

Before running the test you might first want to get an impression using a frequency table: tab_frequency

After the test you might want an effect size measure: es_cohen_g, for Cohen g es_cohen_h_os,
for Cohen h’ es_alt_ratio, for Alternative Ratio

Alternatives for this test could be: ts_score_os, for One-Sample Score Test ts_wald_os, for One-
Sample Wald Test

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

Examples

#Example 1: Numeric list
ex1 = c(1, 1, 2, 1, 2, 1, 2, 1)
ts_binomial_os(ex1)
ts_binomial_os(ex1, p0=0.3)

#Example 2: dataframe
dataFile = "https://peterstatistics.com/Packages/ExampleData/GSS2012a.csv"
df1 <- read.csv(dataFile, sep=",", na.strings=c("", "NA"))
ts_binomial_os(df1['sex'])
ts_binomial_os(df1['mar1'], codes=c("DIVORCED", "NEVER MARRIED"))

ts_box_owa Box F-Test

Description

Tests if the means (averages) of each category could be the same in the population.

Box proposed a correction to the original Fisher one-way ANOVA, on both the test-statistic and the
degrees of freedom.

If the p-value is below a pre-defined threshold (usually 0.05), the null hypothesis is rejected, and
there are then at least two categories who will have a different mean on the scaleField score in the
population.

There are quite some alternatives for this, the stikpet library has Fisher, Welch, James, Box, Scott-
Smith, Brown-Forsythe, Alexander-Govern, Mehrotra modified Brown-Forsythe, Hartung-Agac-
Makabi, Özdemir-Kurt and Wilcox as options. See the notes from ts_fisher_owa() for some discus-
sion on the differences.

Usage

ts_box_owa(nomField, scaleField, categories = NULL)

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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Arguments

nomField the groups variable

scaleField the numeric scores variable

categories vector, optional. the categories to use from catField

Details

The formula used (Box, 1954, p. 299):

FB =
FF

c

df1 =

(∑k
j=1 (n− nj)× s2j

)2
(∑

j=1 nj × s2j

)2
+ n×

∑k
j=1 (n− 2× nj)× s4j

df2 =

(∑k
j=1 (nj − 1)× s2j

)2
∑k

j=1 (nj − 1)× s4j

sig. = 1− F (FB , df1, df2)

With:

c =
n− k

n× (k − 1)
×
∑k

j=1 (n− nj)× s2j∑k
j=1 (nj − 1)× s2j

s2j =

∑nj

i=1 (xi,j − x̄j)
2

nj − 1

x̄j =

∑nj

i=1 xi,j

nj

n =

k∑
j=1

nj

Symbols:

• F − F the F statistic of the classic/Fisher one-way ANOVA. See ts_fisher_owa() for details.

• n the total sample size

• k the number of categories

• xi,j the i-th score in category j

• nj the sample size of category j

• x̄j the sample mean of category j

• s2j the sample variance of the scores in category j

• df the degrees of freedom

• F (. . . , . . . , . . . ) the cumulative distribution function of the F distribution.

This also appears to give the same results for the test statistic, df_1 as the Brown-Forsythe test for
means but a different df_2

The doex and onewaytests libraries used to have a different method for calculating df_1 but after
personal communication with the creators of those packages they mentioned to fix it in an update.

Asiribo and Gurland (1990) derive the same correction as Box, although their notation for df∗
1 is

different, but will give the same result.
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Value

A dataframe with:

n the sample size

k the number of categories

statistic the test statistic (F value)

df1 the degrees of freedom 1

df2 the degrees of freedom 2

pValue the significance (p-value)

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Asiribo, O., & Gurland, J. (1990). Coping with variance heterogeneity. Communications in Statis-
tics - Theory and Methods, 19(11), 4029–4048. doi:10.1080/03610929008830427

Box, G. E. P. (1954). Some theorems on quadratic forms applied in the study of analysis of variance
problems, I: Effect of inequality of variance in the one-way classification. The Annals of Mathe-
matical Statistics, 25(2), 290–302. doi:10.1214/aoms/1177728786

ts_brown_forsythe_owa Brown-Forsythe Means Test

Description

Tests if the means (averages) of each category could be the same in the population.

If the p-value is below a pre-defined threshold (usually 0.05), the null hypothesis is rejected, and
there are then at least two categories who will have a different mean on the scaleField score in the
population.

There are quite some alternatives for this, the stikpet library has Fisher, Welch, James, Box, Scott-
Smith, Brown-Forsythe, Alexander-Govern, Mehrotra modified Brown-Forsythe, Hartung-Agac-
Makabi, Özdemir-Kurt and Wilcox as options. See the notes from ts_fisher_owa() for some discus-
sion on the differences.

Usage

ts_brown_forsythe_owa(nomField, scaleField, categories = NULL)

Arguments

nomField the groups variable

scaleField the numeric scores variable

categories vector, optional. the categories to use from catField

https://PeterStatistics.com
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Details

The formula used (Brown & Forsythe, 1974, p. 130):

FBF =

∑k
j=1 nj × (x̄j − x̄)

2∑k
j=1

(
1− nj

n

)
× s2j

df1 = k − 1

df2 =

(∑k
j=1

(
1− nj

n

)
× s2j

)2
∑k

j=1
(1−

nj
n )×s4j

nj−1

sig. = 1− F (FBF , df1, df2)

With:

s2j =

∑nj

i=1 (xi,j − x̄j)
2

nj − 1

x̄j =

∑nj

i=1 xi,j

nj

x̄ =

∑k
i=1 nj × x̄j

n

n =

k∑
j=1

nj

Symbols:

• xi,j the i-th score in category j

• k the number of categories

• n the total sample size

• nj the sample size of category j

• x̄j the sample mean of category j

• s2j the sample variance of the scores in category j

• df the degrees of freedom

• F (. . . , . . . , . . . ) the cumulative distribution function of the F distribution.

This appears to give the same results as the Box correction, except for df2.

Value

A dataframe with:

n the sample size

k the number of categories

statistic the test statistic (F value)

df1 the degrees of freedom 1

df2 the degrees of freedom 2

p-value the significance (p-value)
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Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Brown, M. B., & Forsythe, A. B. (1974). The small sample behavior of some statistics which test the
equality of several means. Technometrics, 16(1), 129–132. https://doi.org/10.1080/00401706.1974.10489158

ts_cochran_owa Cochran One-Way ANOVA

Description

Tests if the means (averages) of each category could be the same in the population.

Note that according to Hartung et al. (2002, p. 225) the Cochran test is the standard test in meta-
analysis, but should not be used, since it is always too liberal.

If the p-value is below a pre-defined threshold (usually 0.05), the null hypothesis is rejected, and
there are then at least two categories who will have a different mean on the scaleField score in the
population.

There are quite some alternatives for this, the stikpet library has Fisher, Welch, James, Box, Scott-
Smith, Brown-Forsythe, Alexander-Govern, Mehrotra modified Brown-Forsythe, Hartung-Agac-
Makabi, Özdemir-Kurt and Wilcox as options. See the notes from ts_fisher_owa() for some discus-
sion on the differences.

Usage

ts_cochran_owa(nomField, scaleField, categories = NULL)

Arguments

nomField the groups variable

scaleField the numeric scores variable

categories vector, optional. the categories to use from catField

Details

The formula used is (Cavus & Yazıcı, 2020, p. 5; Hartung et al., 2002, p. 202; Mezui-Mbeng, 2015,
p. 787):

χ2
C =

k∑
j=1

wj × (x̄j − ȳw)
2

df = k − 1

sig. = 1− χ2
(
χ2
C , df

)
With:

ȳw =

∑k
j=1 wj × x̄j∑k

j=1 wj

=

k∑
j=1

hj × x̄j

hj =
wj

w

https://PeterStatistics.com
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w =

k∑
j=1

wj

wj =
nj

s2j

s2j =

∑nj

i=1 (xi,j − x̄j)
2

nj − 1

x̄j =

∑nj

i=1 xi,j

nj

Symbols:

• xi,j the i-th score in category j

• k the number of categories

• nj the sample size of category j

• xj the sample mean of category j

• s2j the sample variance of the scores in category j

• wj the weight for category j

• hj the adjusted weight for category j

• df the degrees of freedom

• χ2 (. . . , . . . ) the cumulative distribution function of the chi-square distribution.

Couldn’t really find the formula in the original article which is from Cochran (1937)

Value

A dataframe with:

n the sample size

statistic the chi-square-statistic from the test

df the degrees of freedom

pValue the significance (p-value)

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Cavus, M., & Yazıcı, B. (2020). Testing the equality of normal distributed and independent groups’
means under unequal variances by doex package. The R Journal, 12(2), 134. https://doi.org/10.32614/RJ-
2021-008

Cochran, W. G. (1937). Problems arising in the analysis of a series of similar experiments. Supple-
ment to the Journal of the Royal Statistical Society, 4(1), 102–118. https://doi.org/10.2307/2984123

Hartung, J., Argaç, D., & Makambi, K. H. (2002). Small sample properties of tests on homogeneity
in one-way anova and meta-analysis. Statistical Papers, 43(2), 197–235. https://doi.org/10.1007/s00362-
002-0097-8

Mezui-Mbeng, P. (2015). A note on Cochran test for homogeneity in two ways ANOVA and meta-
analysis. Open Journal of Statistics, 5(7), 787–796. https://doi.org/10.4236/ojs.2015.57078
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ts_cochran_q Cochran Q Test

Description

A test for multiple binairy variables. The null hypothesis is that the proportion of successes is the
same in all groups.

If the p-value (sig.) is below a certain threshold (usually .05) the assumption is rejected and at least
one category has a significant different number of successes than at least one other group, in the
population.

If the test is significant (below the threshold) a post-hoc Dunn test could be used, or pairwise
McNemar-Bowker.

Usage

ts_cochran_q(data, success = NULL)

Arguments

data dataframe with the binary scores

success indicator for what is considered a success (default is first value found)

Details

The formula used (Cochran, 1950, p. 259):

Q =
(k − 1)×

∑k
j=1

(
Cj − C̄

)2
k ×

∑n
i=1 Ri −

∑n
i=1 R

2
i

sig. = 1− χ2 (Q, df)

With:
df = k − 1

Symbols used:

• Cj the number of successes in category j

• k the number of categories (factors)

• Ri the number of succeses in case i

• n the number of cases

Alternatives
library(nonpar)

matr = cbind(var1, var2, var3, var4)

cochrans.q(matr)

library(RVAideMemoire)

myData.long<-reshape(dFr, varying=c("var1", "var2", "var3", "var4"), v.names="score", timevar="var",
times=c("var1", "var2", "var3", "var4"),new.row.names = 1:1000, direction="long")

cochran.qtest(score~var |id, data=myData.long)
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Value

A dataframe with:

n the sample size

statistic the test statistic (chi-square value)

df the degrees of freedom

pValue the significance (p-value)

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Cochran, W. G. (1950). The comparison of percentages in matched samples. Biometrika, 37(3/4),
256–266. https://doi.org/10.2307/2332378

ts_cressie_read_gof Cressie-Read Test of Goodness-of-Fit

Description

A test that can be used with a single nominal variable, to test if the probabilities in all the categories
are equal (the null hypothesis). If the test has a p-value below a pre-defined threshold (usually 0.05)
the assumption they are all equal in the population will be rejected.

There are quite a few tests that can do this. Perhaps the most commonly used is the Pearson chi-
square test, but also an exact multinomial, G-test, Freeman-Tukey, Neyman, Mod-Log Likelihood,
and Freeman-Tukey-Read test are possible.

Usage

ts_cressie_read_gof(
data,
expCount = NULL,
cc = c("none", "yates", "pearson", "williams"),
lambda = 2/3

)

Arguments

data A vector with the data

expCount Optional dataframe with the categories and expected counts

cc Optional continuity correction. Either "none" (default), "yates", "yates2", "pear-
son", or "williams"

lambda optional power to use in equation (see details)

https://PeterStatistics.com
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Details

The formula used is (Cressie & Read, 1984, p. 442):

χ2
C =


2×

∑k
i=1

(
Fi × ln

(
Fi

Ei

))
if λ = 0

2×
∑k

i=1

∑c
j=1

(
Ei × ln

(
Ei

Fi

))
if λ = −1

2
λ×(λ+1) ×

∑k
i=1 Fi ×

((
Fi

Ei

)λ
− 1

)
else

df = k − 1

sig. = 1− χ2
(
χ2
C , df

)
With:

n =

k∑
i=1

Fi

If no expected counts provided:
Ei =

n

k
else:

Ei = n× Epi

np

np =

k∑
i=1

Epi

Symbols used:

• k the number of categories
• Fi the (absolute) frequency of category i
• Ei the expected frequency of category i
• Epi

the provided expected frequency of category i
• n the sample size, i.e. the sum of all frequencies
• np the sum of all provided expected counts
• χ2 (. . . ) the chi-square cumulative density function

Cressie and Read (1984, p. 463) suggest to use λ = 2
3 , which is therefor the default in this function.

Note that
The Yates correction (yates) is calculated using (Yates, 1934, p. 222):

χ2
CY =

k∑
i=1

(|Fi − Ei| − 0.5)
2

Ei

Note that the Yates correction is usually only considered if there are only two categories. Some also
argue this correction is too conservative (see for details Haviland (1990)).
The Pearson correction (pearson) is calculated using (E.S. Pearson, 1947, p. 157):

χ2
CP = χ2

P × n− 1

n

The Williams correction (williams) is calculated using (Williams, 1976, p. 36):

χ2
CW =

χ2
P

q

With:

q = 1 +
k2 − 1

6× n× df
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Value

Dataframe with:

n the sample size

k the number of categories

statistic the chi-square statistic

df the degrees of freedom

pValue two-sided p-value

minExp the minimum expected count

propBelow5 the proportion of expected counts below 5

testUsed a description of the test used

Alternatives

The MSCquartets library has a powerDivStat() function, which can return the test statistics, based
on given observed and expected counts. obs = as.vector(unname(table(nomData)))

k = length(obs)

n = sum(obs)

exp = rep(1/k, k)

n*powerDivStat(obs/n, exp, lambda=2/3)

Author(s)

P. Stikker. Companion Website, YouTube Channel

References

Cressie, N., & Read, T. R. C. (1984). Multinomial goodness-of-fit tests. Journal of the Royal Statis-
tical Society: Series B (Methodological), 46(3), 440–464. doi:10.1111/j.2517-6161.1984.tb01318.x

Haviland, M. G. (1990). Yates’s correction for continuity and the analysis of 2 × 2 contingency
tables. Statistics in Medicine, 9(4), 363–367. doi:10.1002/sim.4780090403

Pearson, E. S. (1947). The choice of statistical tests illustrated on the Interpretation of data classed
in a 2 × 2 table. Biometrika, 34(1/2), 139–167. doi:10.2307/2332518

Williams, D. A. (1976). Improved likelihood ratio tests for complete contingency tables. Biometrika,
63(1), 33–37. doi:10.2307/2335081

Yates, F. (1934). Contingency tables involving small numbers and the chi square test. Supplement
to the Journal of the Royal Statistical Society, 1(2), 217–235. doi:10.2307/2983604

See Also

Alternative tests with a nominal variable:

• ts_pearson_gof Pearson chi-square test of goodness-of-fit

• ts_multinomial_gof exact multinomial test of goodness-of-fit

• ts_g_gof G / Likelihood Ratio / Wilks test of goodness-of-fit

• ts_freeman_tukey_gof Freeman-Tukey test of goodness-of-fit

• ts_neyman_gof Neyman test of goodness-of-fit

https://PeterStatistics.com
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• ts_mod_log_likelihood_gof Mod-Log Likelihood test of goodness-of-fit
• ts_freeman_tukey_read Freeman-Tukey-Read test of goodness-of-fit

Effect sizes that might be of interest:

• es_cramer_v_gof Cramér’s V for goodness-of-fit
• es_cohen_w Cohen w
• es_jbm_e Johnston-Berry-Mielke E

ts_cressie_read_ind Cressie-Read Test of Independence / Power Divergence Test

Description

Cressie-Read Test of Independence / Power Divergence Test

Usage

ts_cressie_read_ind(nom1, nom2, cc = NULL, lambda = 2/3)

Arguments

nom1 A vector with the data of the first variable
nom2 A vector with the data of the second variable
cc c(NULL, "yates", "pearson", or "williams") Optional continuity correction (de-

fault is NULL)
lambda Optional value for lambda (default is 2/3)

Details

The formula used is (Cressie & Read, 1984, p. 442):

χ2
C =


2×

∑r
i=1

∑c
j=1

(
Fi,j × ln

(
Fi,j

Ei,j

))
if λ = 0

2×
∑r

i=1

∑c
j=1

(
Ei,j × ln

(
Ei,j

Fi,j

))
if λ = −1

2
λ×(λ+1) ×

∑r
i=1

∑c
j=1 Fi,j ×

((
Fi,j

Ei,j

)λ
− 1

)
else

df = (r − 1)× (c− 1)

sig. = 1− χ2
(
χ2
C , df

)
With:

n =

r∑
i=1

c∑
j=1

Fi,j

Ei,j =
Ri × Cj

n

Ri =

c∑
j=1

Fi,j

Cj =

r∑
i=1

Fi,j

Symbols used:
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• r the number of categories in the first variable (the number of rows)
• c the number of categories in the second variable (the number of columns)
• Fi,j the observed count in row i and column j
• Ei,j the expected count in row i and column j
• Ri the i-th row total
• Cj the j-th column total
• n the sum of all counts
• χ2 (. . . ) the chi-square cumulative density function

Cressie and Read (1984, p. 463) suggest to use λ = 2
3 , which is therefor the default in this function.

The Yates correction (yates) is calculated using (Yates, 1934, p. 222):

Use instead of Fi,j the adjusted version defined by:

F ∗
i,j =


Fi,j − 0.5 if Fi,j > Ei,j

Fi,j if Fi,j = Ei,j

Fi,j + 0.5 if Fi,j < Ei,j

The Pearson correction (pearson) is calculated using (E.S. Pearson, 1947, p. 157):

χ2
PP = χ2

P × n− 1

n

The Williams correction (williams) is calculated using (Williams, 1976, p. 36):

χ2
PW =

χ2
P

q

With:

q = 1 +

(
n×

(∑r
i=1

1
Ri

)
− 1
)
×
(
n×

(∑c
j=1

1
Cj

)
− 1
)

6× n× df

Value

dataframe with test statistic, degrees of freedom, p-value, minimum expected count, proportion of
expected counts below 5, and test used

Author(s)

P. Stikker

Please visit: https://PeterStatistics.com

YouTube channel: https://www.youtube.com/stikpet

References

Cressie, N., & Read, T. R. C. (1984). Multinomial goodness-of-fit tests. Journal of the Royal
Statistical Society: Series B (Methodological), 46(3), 440–464. https://doi.org/10.1111/j.2517-
6161.1984.tb01318.x

Pearson, E. S. (1947). The choice of statistical tests illustrated on the Interpretation of data classed
in a 2 × 2 table. Biometrika, 34(1/2), 139–167. https://doi.org/10.2307/2332518

Williams, D. A. (1976). Improved likelihood ratio tests for complete contingency tables. Biometrika,
63(1), 33–37. https://doi.org/10.2307/2335081

Yates, F. (1934). Contingency tables involving small numbers and the chi square test. Supplement
to the Journal of the Royal Statistical Society, 1(2), 217–235. https://doi.org/10.2307/2983604
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Examples

nom1 <- c("female", "female","female","female","female","female","female","female",
"female","female","female", "male", "male", "male", "male", "male", "male", "male",
"male", "male", "male", "male", "male", "male", "male", "male", "male","male",
"male", "male", "male", "male", "male", "male", "male", "male", "male", "male",
"male", "male", "male", "male")
nom2 <- c("nl", "nl","nl","nl","nl","nl","nl","nl", "other",
"other", "other","nl","nl","nl","nl","nl","nl","nl","nl","nl",
"nl","nl","nl","nl","nl","nl","nl","other", "other", "other",
"other", "other", "other", "other", "other", "other", "other",
"other", "other", "other", "other", "other")
ts_cressie_read_ind(nom1, nom2)
ts_cressie_read_ind(nom1, nom2, cc="yates")
ts_cressie_read_ind(nom1, nom2, cc="pearson")
ts_cressie_read_ind(nom1, nom2, cc="williams")

ts_fisher Fisher Exact test

Description

Perhaps the most commonly used test when you have two binary variables is the Fisher (Exact)
Test (Fisher, 1922, 1950). It tests if "the relative proportions of one variable are independent of the
second variable; in other words, the proportions at one variable are the same for different values of
the second variable" (McDonald, 2014, p. 77).

Note that for a 2x2 table there are quite a lot of different tests. Upton (1982) discusses 24 of them.
For larger tables a Fisher-Freeman-Halton Exact Test could be used.

Usage

ts_fisher(field1, field2, categories1 = NULL, categories2 = NULL)

Arguments

field1 : dataframe field with categories for the rows

field2 : dataframe field with categories for the columns

categories1 : optional list with order for categories of field1

categories2 : optional list with order for categories of field2

Details

The formula used is from Fisher (1950, p. 96):

p =

amax∑
i=amin

{
pi if pi ≤ ps

0 else

With:

px =

(
R1

x

)
×
(
n−R1

C1−x

)(
n
C1

)
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amin = max (0, C1 +R1 − n)

amax = min (R1, C1)(
x

y

)
=

x!

y!× (x− y)!

Symbols used:

• ps, the probability of sample cross table, i.e. p_x with x being the upper-left cell of the the
cross table from the sample data.

• R1, is the total of the first row,

• C1 the total of the first column.

• n, is the total sample size.

The reason for the minimum value of ’a’, is first that it cannot be negative, since these are counts.
So 0 would be the lowest ever possible. However, once ’a’ is set, and the totals are fixed, all other
values should also be positive (or zero). The value for ’b’ will be if ’a’ is 0, it will simply be R1 -
a. The value for ’c’ is also no issue, this is simply C1 - a. However ’d’ might be negative, even if a
= 0. The value for ’d’ is n - R1 - c. Since c = C1 - a, we get d = n - R1 - C1 + a. But this could be
negative if R1 + C1 > n. So, ’a’ must be at least C1 + R1 - n.

The maximum for ’a’ is simply the minimum of either it’s row total, or column total.

Note that px is the probability mass function of a hypergeometric distribution.

Value

pval : the two-sided p-value (sig.)

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Fisher, R. A. (1922). On the Interpretation of χ2 from Contingency Tables, and the Calculation of
P. Journal of the Royal Statistical Society, 85(1), 87–94. https://doi.org/10.2307/2340521

Fisher, R. A. (1950). Statistical methods for research workers (11th rev.). Oliver and Boyd.

McDonald, J. H. (2014). Handbook of biological statistics (3rd ed.). Sparky House Publishing.

Upton, G. J. G. (1982). A comparison of alternative tests for the 2 x 2 comparative trial. Journal of
the Royal Statistical Society. Series A (General), 145(1), 86–105. https://doi.org/10.2307/2981423

See Also

tab_cross, to create a cross-table.

Examples

#Example: dataframe
dataFile = "https://peterstatistics.com/Packages/ExampleData/GSS2012a.csv"
df1 <- read.csv(dataFile, sep=",", na.strings=c("", "NA"))
ts_fisher(df1[['mar1']], df1[['sex']], categories1=c("WIDOWED", "DIVORCED"))
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ts_fisher_freeman_halton

Fisher-Freeman-Halton Exact test

Description

Fisher-Freeman-Halton Exact test

Usage

ts_fisher_freeman_halton(var1, var2)

Arguments

var1 A vector with the data from the first variable

var2 A vector with the data from the second variable

Details

This simply uses R’s fisher.test() function from the stats library.

Value

the two-tailed p-value/sig.

Author(s)

P. Stikker

Please visit: https://PeterStatistics.com

YouTube channel: https://www.youtube.com/stikpet

References

Fisher, R. A. (1922). On the Interpretation of χ2 from Contingency Tables, and the Calculation of
P. Journal of the Royal Statistical Society, 85(1), 87–94. https://doi.org/10.2307/2340521

Freeman, G. H., & Halton, J. H. (1951). Note on an exact treatment of contingency, goodness of fit
and other problems of significance. Biometrika, 38(1/2), 141–149. https://doi.org/10.2307/2332323

Examples

var1 <- c("female", "female","female","female","female","female","female","female",
"female","female","female", "male", "male", "male", "male", "male", "male",
"male", "male", "male", "male", "male", "male", "male", "male", "male", "male",
"male", "male", "male", "male", "male", "male", "male", "male", "male", "male",
"male", "male", "male", "male", "male")

var2 <- c("nl", "nl","nl","nl","nl","nl","nl","nl", "other", "other", "other",
"nl","nl","nl","nl","nl","nl","nl","nl","nl","nl","nl","nl","nl","nl","nl","nl",
"other", "other", "other", "other", "other", "other", "other", "other", "other",
"other", "other", "other", "other", "other", "other")

ts_fisher(var1, var2)
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ts_fisher_owa Fisher/Classic One-Way ANOVA / F-Test

Description

Tests if the means (averages) of each category could be the same in the population.

If the p-value is below a pre-defined threshold (usually 0.05), the null hypothesis is rejected, and
there are then at least two categories who will have a different mean on the scaleField score in the
population.

There are quite some alternatives for this, the stikpet library has Welch, James, Box, Scott-Smith,
Brown-Forsythe, Alexander-Govern, Mehrotra modified Brown-Forsythe, Hartung-Agac-Makabi,
Özdemir-Kurt and Wilcox as options. See the notes for some discussion on the differences.

Usage

ts_fisher_owa(nomField, scaleField, categories = NULL)

Arguments

nomField the groups variable

scaleField the numeric scores variable

categories vector, optional. the categories to use from catField

Details

The formula used:

FF =
dfw × SSb

dfb × SSw

dfb = k − 1

dfw = n− k

sig. = 1− F (FF , dfb, dfw)

With:

SSb =

k∑
j=1

nj × (x̄j − x̄)
2

SSw = SSt − SSb

SSt =

k∑
j=1

nj∑
i=1

(xi,j − x̄)
2

x̄j =

∑nj

i=1 xi,j

nj

x̄ =

∑k
j=1 nj × x̄j

n
=

∑k
j=1

∑nj

i=1 xi,j

n

n =

k∑
j=1

nj
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Alternative format of the F-statistic equation (but the same result):

FF =
MSb

MSw

Symbols

• xi,j the i-th score in category j

• n the total sample size

• nj the number of scores in category j

• k the number of categories

• x̄j the mean of the scores in category j

• SSi the sum of squares of i (sum of squared deviation of the mean)

• dfi the degrees of freedom of i

• b is between = factor = treatment = model

• w is within = error (the variability within the groups)

Note that the Fisher-Pitman test (Pitman, 1937a, 1937b, 1938) uses a different approach but will
lead to the same result.

I’m not fully sure what the original source is for the Fisher test, but likely either of his sources from
1918, 1921, 1925 or 1935.

Choosing a test
The classic/Fisher one-way ANOVA assumes the data is normally distributed and that the variances
in each group are the same in the population (homoscedasticity). Many have tried to cover the
situations when one or both of these conditions are not met.

Delacre et al. (2019) recommend to use the Welch ANOVA instead of the classic and Brown-
Forsythe versions. How2stats (2018) give a slightly different recommendation based on Tomarken
and Serlin (1986). They agree that usually the Welch ANOVA is preferred of the classic version,
but if the average sample size is below six to still use the Brown-Forsythe.

The researchers in the previous paragraph did not take into consideration other approaches. A few
comments found on those other methods.

According to Hartung et al. (2002, p. 225) the Cochran test is the standard test in meta-analysis,
but should not be used, since it is always too liberal.

Schneider and Penfield (1997) looked at the Welch, Alexander-Govern and the James test (they
ignored the Brown-Forsythe since they found it to perform worse than Welch or James), and con-
cluded: “Under variance heterogeneity, Alexander-Govern’s approximation was not only compara-
ble to the Welch test and the James second-order test but was superior, in certain instances, when
coupled with the power results for those tests” (p. 285).

Cavus and Yazici (2020) compared many different tests. They showed that the Brown-Forsythe,
Box correction, Cochran, Hartung-Agac-Makabi adjusted Welch, and Scott-Smith test, all do not
perform well, compared to the Asiribo-Gurland correction, Alexander-Govern test, Özdemir-Kurt
B2, Mehrotra modified Brown-Forsythe, and Welch.

I only came across the Johansen test in Algina et. al. (1991) and it appears to give the same results
as the Welch test.

In my experience the one-way ANOVA is widely known and often discussed in textbooks. The
Welch anova is gaining popularity. The Brown-Forsythe is already more obscure and some confuse
it with the Brown-Forsythe test for variances. The James test and the Alexander-Govern are perhaps
the least known and the Johansen even less than that (at least they were for me). So, although the
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Alexander-Govern test might be preferred over the Welch test, some researchers prefer to use a
more commonly used test than a more obscure version. In the end it is up to you to decide on what
might be the best test, and also depending on the importance of your research you might want to
investigate which test fits your situation best, rather than taking my word for it.

Besides these, there are more methods, some using simulation (bootstrapping) (see Cavus and
Yazici (2020) for a few of them), others using different techniques (see Yiğit and Gökpinar (2010)
for a few more methods not in here).

Value

A dataframe with an ANOVA table showing:

variance which variance is shown in that row
SS sum of squared deviations from the mean
df degrees of freedom
MS the mean square
F the F-statistic value
pValue the significance (p-value)

Author(s)
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ts_fligner_policello Fligner-Policello Test

Description

An alternative for the more famous Mann-Whitney U test. The MWU test has as an assumption that
the scores in the two categories have the same shape and have unequal variances (Fong & Huang,
2019). The Fligner-Policello test does not, although the distribution around their medians should be
symmetric in the population Zaiontz (n.d.).

Roughly put the assumption for this test is that the two categories have the same median in the
population.

Usage

ts_fligner_policello(
catField,
ordField,
categories = NULL,
levels = NULL,
ties = TRUE,
cc = FALSE

)

Arguments

catField A vector with the scores data

ordField A vector with the group data

categories optional vector with categories to use and order for the categorical field. Other-
wise the first two found will be used.

levels optional vector with the labels of the ordinal field in order.

ties boolean to indicate the use of a ties correction. Default is TRUE

cc boolean to indicate the use of a continuity correction. Default is FALSE

Details

The formula used is:
z =

NY −NX

2×
√
SSX + SSY −MX ×MY

With:
SSX =

∑
x∈X

(NX −MX)
2
, SSY =

∑
y∈Y

(NY −MY )
2

MX =
NX

nx
,MY =

NY

ny

NX =
∑
x∈X

N (x) , NY =
∑
y∈Y

N (y)

N (y) =
∑
x∈X

f (y, x)
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N (x) =
∑
y∈Y

f (x, y)

f (a, b) =

{
1 if a > b

0 if a ≤ b

In case of a tie correction (Hollander et al., 2014, p. 146):

z =
|NY −NX | − 0.5

2×
√
SSX + SSY −MX ×MY

f (a, b) =


1 if a > b

0.5 if a = b

0 if a ≤ b

Symbols used:

• X the scores in the first category

• Y the scores in the second category

• ni the number of scores in the i category

The test is described by Fligner and Policello (1981), and can also be found in Kloke and McKean
(2015, p. 68)

Value

A dataframe with:

n the sample size

statistic test statistic

p-value significance (p-value)

test description of the test used

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations
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Examples

#Example 1: dataframe
dataFile = "https://peterstatistics.com/Packages/ExampleData/GSS2012a.csv"
df1 <- read.csv(dataFile, sep=",", na.strings=c("", "NA"))
myLevels = c('Not scientific at all', 'Not too scientific', 'Pretty scientific', 'Very scientific')
ts_fligner_policello(df1[['sex']], df1[['accntsci']], levels = myLevels)
ts_fligner_policello(df1[['sex']], df1[['accntsci']], levels = myLevels, ties= FALSE, cc=TRUE)
ts_fligner_policello(df1[['sex']], df1[['accntsci']], levels = myLevels, ties= TRUE, cc=FALSE)

#Example 2: vectors
binary = c("apple", "apple", "apple", "peer", "peer", "peer", "peer")
ordinal = c(4, 3, 1, 6, 5, 7, 2)
ts_fligner_policello(binary, ordinal, categories=c("peer", "apple"))

ts_freeman_tukey_gof Freeman-Tukey Test of Goodness-of-Fit

Description

A test that can be used with a single nominal variable, to test if the probabilities in all the categories
are equal (the null hypothesis). If the test has a p-value below a pre-defined threshold (usually 0.05)
the assumption they are all equal in the population will be rejected.

There are quite a few tests that can do this. Perhaps the most commonly used is the Pearson chi-
square test, but also an exact multinomial, G-test, Neyman, Mod-Log Likelihood, Cressie-Read,
and Freeman-Tukey-Read test are possible.

The Freeman-Tukey attempts to make the distribution more like a normal distribution by using a
square root transformation.

Lawal (1984) continued some work from Larntz (1978) and compared the modified Freeman-Tukey,
G-test and the Pearson chi-square test, and concluded that for small samples the Pearson test is
preferred, while for large samples either the Pearson or G-test. Making this Freeman-Tukey test
perhaps somewhat redundant.

This function is shown in this YouTube video and the test is also described at PeterStatistics.com

Usage

ts_freeman_tukey_gof(
data,
expCounts = NULL,
cc = c("none", "yates", "yates2", "pearson", "williams"),
modified = 0

)

Arguments

data A vector with the data
expCounts Optional dataframe with the categories and expected counts
cc Optional continuity correction. Either "none" (default), "yates", "yates2", "pear-

son", or "williams"
modified int, optional. indicate the use of the modified version. Either 0 (default = no

modification), 1 or 2

https://youtu.be/ZPodOwCDuCM
https://peterstatistics.com/Terms/Tests/Freeman-Tukey.html
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Details

The formula used is (Ayinde & Abidoye, 2010, p. 21):

χ2
FT =

k∑
i=1

(√
Fi −

√
Ei

)2
df = k − 1

sig. = 1− χ2
(
χ2
FT , df

)
With:

n =

k∑
i=1

Fi

If no expected counts provided:
Ei =

n

k

else:
Ei = n× Epi

np

np =

k∑
i=1

Epi

A modified version uses another possible smoothing (Bishop, 1969, p. 284; Larntz, 1978, p.253):

χ2
MFT =

k∑
i=1

(√
Fi +

√
Fi + 1−

√
4× Ei + 1

)2
Or slightly different (Read & Cressie, 1988, p. 82):

χ2
MFT =

k∑
i=1

(√
Fi +

√
Fi + 1−

√
4× (Ei + 1)

)2
Symbols used:

• k the number of categories

• Fi the (absolute) frequency of category i

• Ei the expected frequency of category i

• Epi the provided expected frequency of category i

• n the sample size, i.e. the sum of all frequencies

• np the sum of all provided expected counts

• χ2 (. . . ) the chi-square cumulative density function

The test is attributed to Freeman and Tukey (1950), but couldn’t really find it in there. Another
source often mentioned is Bishop et al. (2007)

The Yates continuity correction (cc="yates") is calculated using (Yates, 1934, p. 222):

F ∗
i =


Fi − 0.5 if Fi > Ei

Fi + 0.5 if Fi < Ei

Fi if Fi = Ei
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In some cases the Yates correction is slightly changed to (yates2) (Allen, 1990, p. 523):

F ∗
i =


Fi − 0.5 if Fi − 0.5 > Ei

Fi + 0.5 if Fi + 0.5 < Ei

Fi else

Note that the Yates correction is usually only considered if there are only two categories. Some also
argue this correction is too conservative (see for details Haviland (1990)).

The Pearson correction (cc="pearson") is calculated using (E.S. Pearson, 1947, p. 157):

χ2
adj = χ2

FT × n− 1

n

The Williams correction (cc="williams") is calculated using (Williams, 1976, p. 36):

χ2
adj =

χ2
FT

q

With:

q = 1 +
k2 − 1

6× n× df

The formula is also used by McDonald (2014, p. 87)

Value

Dataframe with:

n the sample size

k the number of categories

statistic the chi-square statistic

df the degrees of freedom

pValue two-sided p-value

minExp the minimum expected count

percBelow5 the percentage of expected counts below 5

test Used a description of the test used

Before, After and Alternatives

BBefore this an impression using a frequency table or a visualisation might be helpful: tab_frequency,
for a frequency table vi_bar_simple, for Simple Bar Chart. vi_cleveland_dot_plot, for Cleve-
land Dot Plot. vi_dot_plot, for Dot Plot. vi_pareto_chart, for Pareto Chart. vi_pie, for Pie
Chart.

After this you might an effect size measure: es_cohen_w, for Cohen w. es_cramer_v_gof, for
Cramer’s V for Goodness-of-Fit. es_fei, for Fei. es_jbm_e, for Johnston-Berry-Mielke E.

or perform a post-hoc test: ph_pairwise_bin, for Pairwise Binary Tests. ph_pairwise_gof, for
Pairwise Goodness-of-Fit Tests. ph_residual_gof_bin, for Residuals Tests using Binary tests.
ph_residual_gof_gof, for Residuals Using Goodness-of-Fit Tests.

Alternative tests: ts_pearson_gof, for Pearson Chi-Square Goodness-of-Fit Test. ts_freeman_tukey_read,
for Freeman-Tukey-Read Test of Goodness-of-Fit. ts_g_gof, for G (Likelihood Ratio) Goodness-
of-Fit Test. ts_mod_log_likelihood_gof, for Mod-Log Likelihood Test of Goodness-of-Fit.
ts_multinomial_gof, for Multinomial Goodness-of-Fit Test. ts_neyman_gof, for Neyman Test
of Goodness-of-Fit. ts_powerdivergence_gof, for Power Divergence GoF Test.
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Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations
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Examples

#Example 1: dataframe
dataFile = "https://peterstatistics.com/Packages/ExampleData/GSS2012a.csv"
df1 <- read.csv(dataFile, sep=",", na.strings=c("", "NA"))
ex1 = df1['mar1']
ts_freeman_tukey_gof(ex1)

#Example 2: Dataframe with various settings
ex2 = df1['mar1']
eCounts = data.frame(c("MARRIED", "DIVORCED", "NEVER MARRIED", "SEPARATED"), c(5,5,5,5))
ts_freeman_tukey_gof(ex2, expCounts=eCounts, cc="yates")
ts_freeman_tukey_gof(ex2, expCounts=eCounts, cc="pearson")
ts_freeman_tukey_gof(ex2, expCounts=eCounts, cc="williams")

#Example 3: a list
ex3 = c("MARRIED", "DIVORCED", "MARRIED", "SEPARATED", "DIVORCED", "NEVER MARRIED",
"DIVORCED", "DIVORCED", "NEVER MARRIED", "MARRIED", "MARRIED", "MARRIED", "SEPARATED",
"DIVORCED", "NEVER MARRIED", "NEVER MARRIED", "DIVORCED", "DIVORCED", "MARRIED")
ts_freeman_tukey_gof(ex3)
ts_freeman_tukey_gof(ex3, expCount=eCounts)

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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ts_freeman_tukey_ind Freeman-Tukey Test of Independence

Description

To test if two nominal variables have an association, the most commonly used test is the Pearson
chi-square test of independence (Pearson, 1900). If the significance of this test is below 0.05 (or
another pre-defined threshold), the two nominal variables have a significant association.

The test compares the observed counts of the cross table with the so-called expected counts. The
expected values are the number of respondents you would expect if the two variables would be
independent.

The Freeman-Tukey test does the same, but attempts to approximate the normal distribution with a
binomial or Poisson distribution.

One problem though is that the test should only be used if not too many cells have a so-called
expected count, of less than 5, and the minimum expected count is at least 1. So you will also have
to check first if these conditions are met. Most often ‘not too many cells’ is fixed at no more than
20% of the cells. This is often referred to as ’Cochran conditions’, after Cochran (1954, p. 420).
Note that for example Fisher (1925, p. 83) is more strict, and finds that all cells should have an
expected count of at least 5 .

Usage

ts_freeman_tukey_ind(
field1,
field2,
categories1 = NULL,
categories2 = NULL,
cc = NULL,
version = 1

)

Arguments

field1 list or dataframe with the first categorical field

field2 list or dataframe with the second categorical field

categories1 optional list with order and/or selection for categories of field1

categories2 optional list with order and/or selection for categories of field2

cc optional methdod for continuity correction. Either NULL (default), "yates",
"pearson", "williams".

version optional integer to indicate which version to use. Either 1 (default), 2, or 3.

Details

The formula used for version 1 is (Bishop et al., 2007, p. 513):

T 2 = 4×
r∑

i=1

c∑
j=1

(√
Fi,j −

√
Ei,j

)2
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The formula used for version 2 is (Lawal, 1984, p. 415):

T 2 =

r∑
i=1

c∑
j=1

(√
Fi,j +

√
Fi,j + 1−

√
4× Ei,j + 1

)2
The formula used for version 3 is (Read & Cressie, 1988, p. 82):

T 2 =

r∑
i=1

c∑
j=1

(√
Fi,j +

√
Fi,j + 1−

√
4× (Ei,j + 1)

)2

df = (r − 1)× (c− 1)

sig. = 1− χ2
(
T 2, df

)
With:

n =

r∑
i=1

c∑
j=1

Fi,j

Ei,j =
Ri × Cj

n

Ri =

c∑
j=1

Fi,j

Cj =

r∑
i=1

Fi,j

Symbols used:

• r the number of categories in the first variable (the number of rows)

• c the number of categories in the second variable (the number of columns)

• Fi,j the observed count in row i and column j

• Ei,j the expected count in row i and column j

• Ri the i-th row total

• Cj the j-th column total

• n the sum of all counts

• χ2 (. . . ) the chi-square cumulative density function

The test is attributed to Freeman and Tukey (1950), but couldn’t really find it in there. Ayinde and
Abidoye (2010) also show the formula in more modern notation from version 1, and an another
source for version 2 is Ozturk et al. (2023).

The Pearson correction (pearson) is calculated using (E.S. Pearson, 1947, p. 157):

χ2
PP = χ2

P × n− 1

n

The Williams correction (williams) is calculated using (Williams, 1976, p. 36):

χ2
PW =

χ2
P

q

With:

q = 1 +

(
n×

(∑r
i=1

1
Ri

)
− 1
)
×
(
n×

(∑c
j=1

1
Cj

)
− 1
)

6× n× df
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Value

A dataframe with:

n the sample size

n rows number of categories used in first field

n col. number of categories used in second field

statistic the test statistic (chi-square value)

df the degrees of freedom

p-value the significance (p-value)

min. exp. the minimum expected count

prop. exp. below 5

proportion of cells with expected count less than 5

test description of the test used

Author(s)
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ts_freeman_tukey_read Freeman-Tukey-Read Test of Goodness-of-Fit

Description

A test that can be used with a single nominal variable, to test if the probabilities in all the categories
are equal (the null hypothesis). If the test has a p-value below a pre-defined threshold (usually 0.05)
the assumption they are all equal in the population will be rejected.

There are quite a few tests that can do this. Perhaps the most commonly used is the Pearson chi-
square test, but also an exact multinomial, G-test, Freeman-Tukey, Neyman, Mod-Log Likelihood
and Cressie-Read test are possible.

This is actually a family (class) of tests, similar as the Cressie-Read. Weights can be chosen. the
default will give the same results as the default for Cressie-Read with lambda = 0.5. Setting the
weights to 4/5, 8/5, 16/15, 8/15 gives the same results as Cressie-Read with lambda = 3/2. The
Pearson chi-square test is the same when setting weights to 1, 2, 1 and setting the weight simply to
4 gives the original Freeman-Tukey.

This function is shown in this YouTube video and the test is also described at PeterStatistics.com

Usage

ts_freeman_tukey_read(
data,
expCounts = NULL,
weights = c(4/3, 8/3),
cc = c("none", "yates", "yates2", "pearson", "williams")

)

Arguments

data A vector with the data

expCounts Optional dataframe with the categories and expected counts

weights the weights to be used (should sum to 4)

cc Optional continuity correction. Either "none" (default), "yates", "pearson", or
"williams"

Details

The formula used is (Read, 1987, p. 271):

FT (b0, b1, . . . , bx) =

k∑
i=1

 x∑
j=0

bj ×

(√
Fi

Ei

)j
×

(√
Fi −

√
Ei

)2
df = k − 1

sig. = 1− χ2 (FT, df)

With, if no expected counts provided:
Ei =

n

k

https://youtu.be/Njc0YeiJLqE
https://peterstatistics.com/Terms/Tests/Freeman-Tukey-Read.html
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else:
Ei = n× Epi

np

np =

k∑
i=1

Epi

The sum of the bi should be four, i.e.
x∑

i=0

= 4

Symbols used:

• k the number of categories
• Fi the (absolute) frequency of category i
• Ei the expected frequency of category i
• Epi the provided expected frequency of category i
• n the sample size, i.e. the sum of all frequencies
• np the sum of all provided expected counts
• χ2 (. . . ) the chi-square cumulative density function

:

The default weights are the ones used by Read
(
4
3 ,

8
3

)
, which would be the same as using a Cressie-

Read power divergence with λ = 1
2

The Yates continuity correction (cc="yates") is calculated using (Yates, 1934, p. 222):

F ∗
i =


Fi − 0.5 if Fi > Ei

Fi + 0.5 if Fi < Ei

Fi if Fi = Ei

In some cases the Yates correction is slightly changed to (yates2) (Allen, 1990, p. 523):

F ∗
i =


Fi − 0.5 if Fi − 0.5 > Ei

Fi + 0.5 if Fi + 0.5 < Ei

Fi else

GY = 2×
k∑

i=1

(
F ∗
i × ln

(
F ∗
i

Ei

))
Where if F ∗

i = 0 then F ∗
i × ln

(
F∗

i

Ei

)
= 0

The Pearson correction (pearson) is calculated using (E.S. Pearson, 1947, p. 157):

χ2
PP = χ2

P × n− 1

n

The Williams correction (williams) is calculated using (Williams, 1976, p. 36):

χ2
PW =

χ2
P

q

With:

q = 1 +
k2 − 1

6× n× df

The formula is also used by McDonald (2014, p. 87)
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Value

Dataframe with:

n the sample size

k the number of categories

statistic the chi-square statistic

df the degrees of freedom

pValue two-sided p-value

minExp the minimum expected count

percBelow5 the percentage of expected counts below 5

testUsed a description of the test used

Before, After and Alternatives

BBefore this an impression using a frequency table or a visualisation might be helpful: tab_frequency,
for a frequency table vi_bar_simple, for Simple Bar Chart. vi_cleveland_dot_plot, for Cleve-
land Dot Plot. vi_dot_plot, for Dot Plot. vi_pareto_chart, for Pareto Chart. vi_pie, for Pie
Chart.

After this you might an effect size measure: es_cohen_w, for Cohen w. es_cramer_v_gof, for
Cramer’s V for Goodness-of-Fit. es_fei, for Fei. es_jbm_e, for Johnston-Berry-Mielke E.

or perform a post-hoc test: ph_pairwise_bin, for Pairwise Binary Tests. ph_pairwise_gof, for
Pairwise Goodness-of-Fit Tests. ph_residual_gof_bin, for Residuals Tests using Binary tests.
ph_residual_gof_gof, for Residuals Using Goodness-of-Fit Tests.

Alternative tests: ts_pearson_gof, for Pearson Chi-Square Goodness-of-Fit Test. ts_freeman_tukey_gof,
for Freeman-Tukey Test of Goodness-of-Fit. ts_g_gof, for G (Likelihood Ratio) Goodness-of-Fit
Test. ts_mod_log_likelihood_gof, for Mod-Log Likelihood Test of Goodness-of-Fit. ts_multinomial_gof,
for Multinomial Goodness-of-Fit Test. ts_neyman_gof, for Neyman Test of Goodness-of-Fit.
ts_powerdivergence_gof, for Power Divergence GoF Test.

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Haviland, M. G. (1990). Yates’s correction for continuity and the analysis of 2 × 2 contingency
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Pearson, E. S. (1947). The choice of statistical tests illustrated on the Interpretation of data classed
in a 2 × 2 table. Biometrika, 34(1/2), 139–167. doi:10.2307/2332518

Read, C. B. (1993). Freeman-Tukey chi-squared goodness-of-fit statistics. Statistics & Probability
Letters, 18(4), 271–278. doi:10.1016/0167-7152(93)90015-B

Williams, D. A. (1976). Improved likelihood ratio tests for complete contingency tables. Biometrika,
63(1), 33–37. doi:10.2307/2335081
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https://www.patreon.com/bePatron?u=19398076


282 ts_friedman

Examples

#Example 1: dataframe
dataFile = "https://peterstatistics.com/Packages/ExampleData/GSS2012a.csv"
df1 <- read.csv(dataFile, sep=",", na.strings=c("", "NA"))
ex1 = df1['mar1']
ts_freeman_tukey_read(ex1)

#Example 2: pandas series with various settings
ex2 = df1['mar1']
eCounts = data.frame(c("MARRIED", "DIVORCED", "NEVER MARRIED", "SEPARATED"), c(5,5,5,5))
ts_freeman_tukey_read(ex2, expCounts=eCounts, cc="yates")
ts_freeman_tukey_read(ex2, expCounts=eCounts, cc="pearson")
ts_freeman_tukey_read(ex2, expCounts=eCounts, cc="williams")

#Example 3: a list
ex3 = c("MARRIED", "DIVORCED", "MARRIED", "SEPARATED", "DIVORCED", "NEVER MARRIED",
"DIVORCED", "DIVORCED", "NEVER MARRIED", "MARRIED", "MARRIED", "MARRIED", "SEPARATED",
"DIVORCED", "NEVER MARRIED", "NEVER MARRIED", "DIVORCED", "DIVORCED", "MARRIED")

ts_freeman_tukey_read(ex3)

ts_friedman Friedman Test

Description

A test to determine if any of the variables has a significant different average ranking than any of the
others.

It is a paired-samples version of a Kruskal-Wallis test. If the p-value is below a pre-defined threshold
(usually 0.05) it indicates at least one variable (column) is different than another.

Usage

ts_friedman(data, levels = NULL, ties = TRUE, dist = "chi")

Arguments

data dataframe. A column for each variable

levels vector, optional. Indication of what the levels are in order

ties boolean, optional. Apply a ties correction. Default is True

dist string, optional. Distribution to use. Either "chi" (default), "f", "normal"

Details

The formula used in case of no ties (Friedman, 1937, p. 679):

χ2
F =

 12

n× k × (k + 1)
×

k∑
j=1

R2
j

− 3× n× (k + 1)

df = k − 1
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With:

Rj =

n∑
i=1

ri,j

In case a ties correction is used (Hollander & Wolfe, 1999, p. 274):

χ2
Fadj =

12×
∑k

j=1 R
2
j − 3× n2 × (k + 1)

2

n× (k + 1)− (
∑

t3i,j)−k

k−1

The ties correction used by IBM SPSS (2021, p. 811) will give the same result:

χ2
Fadj =

χ2
F

1−
∑

t3i,j−ti,j

n×(k3−k)

The function uses more of a one-way ANOVA approach in case of ties, but then on the ranks. It
leads to the same result:

χ2
Fadj =

n×
∑k

j=1 (r̄j − r̄)
2(∑k

j=1

∑n
i=1(ri,j−r̄)2

n×(k−1)

)
With:

r̄j =
Rj

n

r̄ =

∑k
j=1 Rj

n× k
=

n× (k + 1)

2

The significance is then determined using:

sig. = 1− χ2
(
χ2
F , df

)
A normal distribution approximation was proposed by Friedman (1937, p. 695; 1939, p. 109):

zF =
χ2
F − (k − 1)√

2× n−1
n × (k − 1)

sig. = 2× (1− Φ (|zF |))

And an F distribution by Iman and Davenport (1980, p. 573):

FF =
(n− 1)× χ2

F

n× (k − 1)− χ2
F

df1 = k − 1

df2 = (k − 1)× (n− 1)

sig. = 1− F (FF , df1, df2)

Some might refer to Conover for this F-distribution, but in Conover (1980, p. 300) it seems Conover
credits Iman and Davenport himself.

Symbols Used

• n, the number of cases
• k, the number of variables
• ri,j , the rank of case i, in variable j. The ranks are determined for each case.
• ti,j , the frequency of unique rank j, in case i. For each row the frequencies of each rank is

determined in the calculations.
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Value

res : dataframe with the following columns

n sample size

statistic test statistic used

df, df1, df2 degrees of freedom (if applicable)

p-value the p-value (significance)

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References
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of variance. Journal of the American Statistical Association, 32(200), 675–701. doi:10.2307/2279372

Friedman, M. (1939). A correction. Journal of the American Statistical Association, 34(205),
109–109. doi:10.1080/01621459.1939.10502372

Hollander, M., & Wolfe, D. A. (1999). Nonparametric statistical methods (2nd ed.). Wiley.

IBM. (2021). IBM SPSS Statistics Algorithms. IBM.
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ts_g_gof G (Likelihood Ratio) Test of Goodness-of-Fit

Description

A test that can be used with a single nominal variable, to test if the probabilities in all the categories
are equal (the null hypothesis). If the test has a p-value below a pre-defined threshold (usually 0.05)
the assumption they are all equal in the population will be rejected.

There are quite a few tests that can do this. Perhaps the most commonly used is the Pearson chi-
square test, but also an exact multinomial, Freeman-Tukey, Neyman, Mod-Log Likelihood and
Cressie-Read test are possible.

This function is shown in this YouTube video and the test is also described at PeterStatistics.com

Usage

ts_g_gof(
data,
expCounts = NULL,
cc = c("none", "yates", "yates2", "pearson", "williams")

)

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
https://youtu.be/nQhHsGmsaN0
https://peterstatistics.com/Terms/Tests/Gtest.html
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Arguments

data A vector with the data

expCounts Optional dataframe with the categories and expected counts

cc Optional continuity correction. Either "none" (default), "yates", "pearson", or
"williams"

Details

The formula used (Wilks, 1938, p. 62):

G = 2×
k∑

i=1

(
Fi × ln

(
Fi

Ei

))
df = k − 1

sig. = 1− χ2 (G, df)

With:

n =

k∑
i=1

Fi

If no expected counts provided:

Ei =
n

k

else:

Ei = n× Epi

np

np =

k∑
i=1

Epi

Symbols used:

• k the number of categories

• Fi the (absolute) frequency of category i

• Ei the expected frequency of category i

• Epi
the provided expected frequency of category i

• n the sample size, i.e. the sum of all frequencies

• np the sum of all provided expected counts

• χ2 (. . . ) the chi-square cumulative density function

The term ‘Likelihood Ratio Goodness-of-Fit’ can for example be found in an article from Quine and
Robinson (1985), the term ‘Wilks’s likelihood ratio test’ can also be found in Li and Babu (2019,
p. 331), while the term G-test is found in Hoey (2012, p. 4)

The Yates continuity correction (cc="yates") is calculated using (Yates, 1934, p. 222):

F ∗
i =


Fi − 0.5 if Fi > Ei

Fi + 0.5 if Fi < Ei

Fi if Fi = Ei
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In some cases the Yates correction is slightly changed to (yates2) (Allen, 1990, p. 523):

F ∗
i =


Fi − 0.5 if Fi − 0.5 > Ei

Fi + 0.5 if Fi + 0.5 < Ei

Fi else

GY = 2×
k∑

i=1

(
F ∗
i × ln

(
F ∗
i

Ei

))
Where if F ∗

i = 0 then F ∗
i × ln

(
F∗

i

Ei

)
= 0

Note that the Yates correction is usually only considered if there are only two categories. Some also
argue this correction is too conservative (see for details Haviland (1990)).

The Pearson correction (cc="pearson") is calculated using (E.S. Pearson, 1947, p. 157):

GP = G× n− 1

n

The Williams correction (cc="williams") is calculated using (Williams, 1976, p. 36):

GW =
G

q

With:

q = 1 +
k2 − 1

6× n× df

The formula is also used by McDonald (2014, p. 87)

Value

Dataframe with:

n the sample size

k the number of categories

statistic the chi-square statistic

df the degrees of freedom

pValue two-sided p-value

minExp the minimum expected count

percBelow5 the percentage of expected counts below 5

test used a description of the test used

Before, After and Alternatives

Before this an impression using a frequency table or a visualisation might be helpful: tab_frequency,
for a frequency table vi_bar_simple, for Simple Bar Chart. vi_cleveland_dot_plot, for Cleve-
land Dot Plot. vi_dot_plot, for Dot Plot. vi_pareto_chart, for Pareto Chart. vi_pie, for Pie
Chart.

After this you might an effect size measure: es_cohen_w, for Cohen w. es_cramer_v_gof, for
Cramer’s V for Goodness-of-Fit. es_fei, for Fei. es_jbm_e, for Johnston-Berry-Mielke E.
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or perform a post-hoc test: ph_pairwise_bin, for Pairwise Binary Tests. ph_pairwise_gof, for
Pairwise Goodness-of-Fit Tests. ph_residual_gof_bin, for Residuals Tests using Binary tests.
ph_residual_gof_gof, for Residuals Using Goodness-of-Fit Tests.

Alternative tests: ts_pearson_gof, for Pearson Chi-Square Goodness-of-Fit Test. ts_freeman_tukey_gof,
for Freeman-Tukey Test of Goodness-of-Fit. ts_freeman_tukey_read, for Freeman-Tukey-Read
Test of Goodness-of-Fit. ts_mod_log_likelihood_gof, for Mod-Log Likelihood Test of Goodness-
of-Fit. ts_multinomial_gof, for Multinomial Goodness-of-Fit Test. ts_neyman_gof, for Neyman
Test of Goodness-of-Fit. ts_powerdivergence_gof, for Power Divergence GoF Test.

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Haviland, M. G. (1990). Yates’s correction for continuity and the analysis of 2 × 2 contingency
tables. Statistics in Medicine, 9(4), 363–367. doi:10.1002/sim.4780090403
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McDonald, J. H. (2014). Handbook of biological statistics (3rd ed.). Sparky House Publishing.

Pearson, E. S. (1947). The choice of statistical tests illustrated on the Interpretation of data classed
in a 2 × 2 table. Biometrika, 34(1/2), 139–167. doi:10.2307/2332518

Quine, M. P., & Robinson, J. (1985). Efficiencies of chi-square and likelihood Ratio goodness-of-fit
tests. The Annals of Statistics, 13(2), 727–742. doi:10.1214/aos/1176349550

Wilks, S. S. (1938). The large-sample distribution of the likelihood ratio for testing composite
hypotheses. The Annals of Mathematical Statistics, 9(1), 60–62. doi:10.1214/aoms/1177732360
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63(1), 33–37. doi:10.2307/2335081
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Examples

#Example 1: dataframe
dataFile = "https://peterstatistics.com/Packages/ExampleData/GSS2012a.csv"
df1 <- read.csv(dataFile, sep=",", na.strings=c("", "NA"))
ex1 = df1['mar1']
ts_g_gof(ex1)

#Example 2: dataframe with various settings
ex2 = df1['mar1']
eCounts = data.frame(c("MARRIED", "DIVORCED", "NEVER MARRIED", "SEPARATED"), c(5,5,5,5))
ts_g_gof(ex2, expCounts=eCounts, cc="yates")
ts_g_gof(ex2, expCounts=eCounts, cc="pearson")
ts_g_gof(ex2, expCounts=eCounts, cc="williams")

#Example 3: a list
ex3 = c("MARRIED", "DIVORCED", "MARRIED", "SEPARATED", "DIVORCED", "NEVER MARRIED",
"DIVORCED", "DIVORCED", "NEVER MARRIED", "MARRIED", "MARRIED", "MARRIED", "SEPARATED",
"DIVORCED", "NEVER MARRIED", "NEVER MARRIED", "DIVORCED", "DIVORCED", "MARRIED")

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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ts_g_gof(ex3)

ts_g_ind G (Likelihood Ratio / Wilks) Test of Independence

Description

This test is similar as a Pearson Chi-Square test of independence, but approaches it from a likelihood-
ratio approach (see Monica, 2015).

If the significance of this test is below 0.05 (or another pre-defined threshold), the two nominal
variables have a significant association.

The test compares the observed counts of the cross table with the so-called expected counts. The
expected values are the number of respondents you would expect if the two variables would be
independent.See the Pearson Chi-Square test of independence for more details on expected counts.

One problem though is that the test should only be used if not too many cells have a so-called
expected count, of less than 5, and the minimum expected count is at least 1. So you will also have
to check first if these conditions are met. Most often ‘not too many cells’ is fixed at no more than
20% of the cells. This is often referred to as ’Cochran conditions’, after Cochran (1954, p. 420).
Note that for example Fisher (1925, p. 83) is more strict, and finds that all cells should have an
expected count of at least 5 .

Usage

ts_g_ind(field1, field2, categories1 = NULL, categories2 = NULL, cc = NULL)

Arguments

field1 list or dataframe with the first categorical field

field2 list or dataframe with the second categorical field

categories1 optional list with order and/or selection for categories of field1

categories2 optional list with order and/or selection for categories of field2

cc optional methdod for continuity correction. Either NULL (default), "yates",
"pearson", "williams".

Details

The formula used (Wilks, 1938, p. 62):

G = 2×
r∑

i=1

c∑
j=1

(
Fi,j × ln

(
Fi,j

Ei,j

))

df = (r − 1)× (c− 1)

sig. = 1− χ2 (G, df)

With:

n =

r∑
i=1

c∑
j=1

Fi,j
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Ei,j =
Ri × Cj

n

Ri =

c∑
j=1

Fi,j

Cj =

r∑
i=1

Fi,j

The Yates correction (yates) is calculated using (Yates, 1934, p. 222):

Use instead of Fi,j the adjusted version defined by:

F ∗
i,j =


Fi,j − 0.5 if Fi,j > Ei,j

Fi,j if Fi,j = Ei,j

Fi,j + 0.5 if Fi,j < Ei,j

The Pearson correction (pearson) is calculated using (E.S. Pearson, 1947, p. 157):

χ2
PP = G2 × n− 1

n

The Williams correction (williams) is calculated using:

χ2
PW =

G

q

With:

q = 1 +

(
n×

(∑r
i=1

1
Ri

)
− 1
)
×
(
n×

(∑c
j=1

1
Cj

)
− 1
)

6× n× df

The formula is probably from Williams (1976, p. 36) but the one shown here is taken from McDon-
ald (1976, p. 36).

Value

A dataframe with:

n the sample size

n rows number of categories used in first field

n col. number of categories used in second field

statistic the test statistic (chi-square value)

df the degrees of freedom

p-value the significance (p-value)

min. exp. the minimum expected count
prop. exp. below 5

proportion of cells with expected count less than 5

test description of the test used

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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ts_ham_owa Hartung-Argaç-Makambi Test

Description

Tests if the means (averages) of each category could be the same in the population.

If the p-value is below a pre-defined threshold (usually 0.05), the null hypothesis is rejected, and
there are then at least two categories who will have a different mean on the scaleField score in the
population.

This test is a modification of the Welch one-way ANOVA.

There are quite some alternatives for this, the stikpet library has Fisher, Welch, James, Box, Scott-
Smith, Brown-Forsythe, Alexander-Govern, Mehrotra modified Brown-Forsythe, Hartung-Agac-
Makabi, Özdemir-Kurt and Wilcox as options. See the notes from ts_fisher_owa() for some discus-
sion on the differences.

Usage

ts_ham_owa(nomField, scaleField, categories = NULL, version = c(1, 2))

Arguments

nomField the groups variable

scaleField the numeric scores variable

categories vector, optional. the categories to use from catField

version the phi method calculation to use (see details)
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Details

The formula used (Hartung et al., 2002, p. 206):

W =
1

k−1 ×
∑k

j=1 w
∗
j × (x̄j − ȳ∗w)

2

1 + 2×(k−2)
k2−1 × λ∗

df1 = k − 1

df2 =
k2 − 1

3× λ∗

sig. = 1− F (W,df1, df2)

With:

ȳ∗w =

k∑
j=1

h∗
j × x̄j

h∗
j =

w∗
j

w∗

w∗
j =

nj

s2j
× 1

ϕj

w∗ =

k∑
j=1

w∗
j

ϕj =
nj + 2

nj + 1

x̄j =

∑nj

j=1 xi,j

nj

s2j =

∑nj

i=1 (xi,j − x̄j)
2

nj − 1

λ∗ =

k∑
j=1

(
1− h∗

j

)2
nj − 1

Symbols used:

• xi,j the i-th score in category j
• k the number of categories
• nj the sample size of category j
• xj the sample mean of category j
• s2j the sample variance of the scores in category j
• w∗

j the modified weight for category j
• h∗

j the adjusted modified weight for category j
• dfi the i-th degrees of freedom

Note that the numerator in W is the same as the Cochran test statistic.

Cavis and Yazici (2020, p. 6) uses ϕj =
nj−1
nj−3 . However the original article states that these are

unbalanced weights of the Welch test and in their experience, using these makes the test too conser-
vative. In the original article they find from their simulation experience that using (n_j+2)/(n_j+1)
gives reliable results for small sample sizes, and a large number of populations (Hartung et al. p.
207).

By setting ’version=2’ the same version for ϕ as in the Doex library will be used
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Value

A dataframe with:

n the sample size

k the number of categories

statistic the test statistic (F value)

df1 the degrees of freedom 1

df2 the degrees of freedom 2

p-value the significance (p-value)

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Cavus, M., & Yazıcı, B. (2020). Testing the equality of normal distributed and independent groups’
means under unequal variances by doex package. The R Journal, 12(2), 134. https://doi.org/10.32614/RJ-
2021-008

Hartung, J., Argaç, D., & Makambi, K. H. (2002). Small sample properties of tests on homogeneity
in one-way anova and meta-analysis. Statistical Papers, 43(2), 197–235. https://doi.org/10.1007/s00362-
002-0097-8

ts_james_owa James One-Way Test

Description

Tests if the means (averages) of each category could be the same in the population.

If the p-value is below a pre-defined threshold (usually 0.05), the null hypothesis is rejected, and
there are then at least two categories who will have a different mean on the scaleField score in the
population.

James (1951) proposed three tests, one for large group sizes, a ’first order test’, and a ’second order
test’. The later two a significance level (α) is chosen and a critical value is then calculated based on
a modification of the chi-square distribution.

The James test statistic value J is the same as the test statistic in Cochran’s test, calculated slightly
different, but will lead to the same result.

Schneider and Penfield (1997) looked at the Welch, Alexander-Govern and the James test (they
ignored the Brown-Forsythe since they found it to perform worse than Welch or James), and con-
cluded: “Under variance heterogeneity, Alexander-Govern’s approximation was not only compara-
ble to the Welch test and the James second-order test but was superior, in certain instances, when
coupled with the power results for those tests” (p. 285).

There are quite some alternatives for this, the stikpet library has Fisher, Welch, James, Box, Scott-
Smith, Brown-Forsythe, Alexander-Govern, Mehrotra modified Brown-Forsythe, Hartung-Agac-
Makabi, Özdemir-Kurt and Wilcox as options. See the notes from ts_fisher_owa() for some discus-
sion on the differences.

https://PeterStatistics.com
https://www.youtube.com/stikpet
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Usage

ts_james_owa(
nomField,
scaleField,
categories = NULL,
order = c(0, 1, 2),
ddof = 2

)

Arguments

nomField the groups variable

scaleField the numeric scores variable

categories vector, optional. the categories to use from catField

order the order of the James test to perform (see details)

ddof int, optional. Offset for degrees of freedom. Default is 2.

Details

The formula use for the test statistic (James, 1951, p. 324):

J =

k∑
j=1

wj × x̄2
j −

(∑k
s=1 ws × x̄s

)2
w

= χ2
Cochran

With:
wj =

nj

s2j

hj =
wj

w

w =

k∑
j=1

wj

s2j =

∑nj

i=1 (xi,j − x̄j)
2

nj − 1

x̄j =

∑nj

i=1 xi,j

nj

#’ Symbols:

• xi,j the i-th score in category j

• k the number of categories

• nj the sample size of category j

• xj the sample mean of category j

• s2j the sample variance of the scores in category j

• wj the weight for category j

• hj the adjusted weight for category j
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For large group size (order=0) the same result as the Cochran test (James, 1951, p. 324):

df = k − 1

sig. = 1− χ2 (J, df)

The first order James test (order=1) is done using (James, 1951, p. 324):

Jcrit = χ2
crit ×

(
1 +

3× χ2
crit + k + 1

2× (k2 − 1)
× λ

)
With:

λ =

k∑
j=1

(1− hj)
2

vj

χ2
crit = Q

(
χ2 (1− α, df)

)
vj = nj − 1

Symbols used:

• χ2
crit the critical chi-square value at alpha level

The second order James test (order=2) is done using (James)

Jcrit = C+
1

2
×(3× χ4 + χ2)×λ+

1

16
×(3× χ4 + χ2)

2×
(
1− k − 3

C
)× λ2 +

1

2
× (3× χ4 + χ2)×

((
8×R23 − 10×R22 + 4× R21 − 6×R2

12 + 8×R12 ×R11 − 4× R2
11

)
+
(
2×R23 − 4×R22 + 2×R21 − 2×R2

12 + 4×R12 ×R11 − 2×R2
11

)
× (χ2 − 1) +

1

4
×
(
−R2

12 + 4×R12 ×R11 − 2×R12 ×R10 − 4×R2
11 + 4×R11 ×R10 −R2

10

)
× (3× χ4 − 2× χ2 − 1))+

(
R23 − 3×R22 + 3×R21 −R20

)
×(5× χ6 + 2× χ4 + χ2)+

3

16
×
(
R2

12 − 4×R23 + 6×R22 − 4×R21 +R20

)
×(35× χ8 + 15× χ6 + 9× χ4 + 5× χ2)+

1

16
×
(
−2×R2

22 + 4×R21 −R20 + 2×R12 ×R10 − 4×R11 ×R10 +R2
10

)
×(9× χ8 − 3× χ6 − 5× χ4 − χ2)+

1

4
×
(
−R22 +R2

11

)
×(27× χ8 + 3× χ6 + χ4 + χ2)+

1

4
×(R23 −R12 ×R11)×(45× χ8 + 9× χ6 + 7× χ4 + 3× χ2)

With:

λ2 =

k∑
j=1

(1− hj)
2

v∗j

v∗j = nj − 2

χ2×s =

(
χ2
crit

)s∏s
i=1 (k + 2× i− 3)

Rxy =

k∑
j=1

hy
j(

v∗j
)x

This function will do an iterative search to find the approximate p-value

The use of v∗j = nj − 2 for the James order 2 test is based on James (1951, p. 328) which can also
be found in Deshon and Alexander (1994, p. 331).

However, others use v∗j = nj − 1 for example Myers (1998, p. 209) and Cribbie et al. (2012, p. 62)
By setting ’ddof’ this alternative version will be used.

Value

A dataframe with:

n the sample size

statistic the J-statistic from the test

Jcrit critical J value

df the degrees of freedom

pValue the significance (p-value)

test description of test used
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Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations
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ts_kruskal_wallis Kruskal-Wallis H Test

Description

This test is an extension of the Mann-Whitney U test (see ts_mann_whitney()) to more than two cat-
egories. It is also seen as the non-parametric version of the one-way ANOVA (see ts_fisher_owa()).

The test can indicate if any of the scores in one or more categories, has a significant different
mean rank than one or more of the other categories. More strickly the null hypothesis is that the
probability of a randomly selected case having a score greater than a random score from the other
category is 50% (Divine et al., p. 286).

Alternative there is a Mood Median test (see ts_mood_median()).

To pin-point which category or categories differ significantly, a post-hoc analysis could be used.

Usage

ts_kruskal_wallis(
catField,
ordField,
categories = NULL,
levels = NULL,
method = c("chi2", "kw-gamma", "kw-gamma-chi2", "kw-beta", "kw-beta-f",
"wallace-I-beta", "wallace-II-beta", "wallace-III-beta", "wallace-I-f",
"wallace-II-f", "wallace-III-f", "iman"),

tiescorr = c(TRUE, FALSE)
)

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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Arguments

catField vector with categories

ordField vector with the scores

categories vector, optional. the categories to use from catField

levels vector, optional. the levels or order used in ordField.

method string, optional. the specific variation of the test to use. Default is "chi2".
Options are: : "chi2", "kw-gamma", "kw-gamma-chi2", "kw-beta", "kw-beta-
f", "wallace-f1", "wallace-f2", "wallace-f3", "wallace-beta1", "wallace-beta2",
"wallace-beta3", "ids"

tiescorr boolean, optional. use of a ties correction. Default is True.

Details

The H value
The formula used is (Kruskal & Wallis, 1952, p. 586):

H =
12

n× (n+ 1)
×

k∑
i=1

R2
i

ni
− 3× (n+ 1)

With:

Ri =

ni∑
j=1

ri,j

The ties correction (Kruskal & Wallis, 1952, p. 586):

Hadj =
H

1−
∑

T
n3−n

With:
Tj = t3j − tj

Or alternatively:

Hadj = (n− 1)×
∑k

i=1 ni (r̄i − r̄)
2∑k

i=1

∑ni

j=1 (ri,j − r̄)
2

With:
r̄i =

Ri

ni

r̄ =

∑k
i=1 r̄i∑k
i=1 ni

The Test
"chi2", Kruskal-Wallis Chi-Square Approximation

sig. ≈ 1− χ2 (H, df)

df = k − 1

"kw-gamma", Kruskal-Wallis incomplete gamma approximation (Kruskal & Wallis, 1952, p. 609)

sig. ≈ 1− γ (H,α, β)
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α =
µ2

σ2

β =
σ2

µ

µ = k − 1

σ2 = 2× (k − 1)−
2×

(
k × k2 − 6× k + n×

(
2× k2 − 6× k + 1

))
5× n× (n+ 1)

− 6

5
×

k∑
i=1

1

ni

"kw-gamma-chi2", Kruskal-Wallis Chi-square approximation of gamma approximation

sig. = 1− χ2
(
χ2
a, df

)
χ2
a =

2× µ

σ2
×H

df = 2× µ2

σ2

"kw-beta", Kruskal-Wallis incomplete Beta distribution approximation (Kruskal & Wallis, 1952, p.
609)

sig. = 1− β

(
H

M
,α, β

)

M =
n3 −

∑k
i=1 n

3
i

n× (n+ 1)

α = df1 ×
1

2

β = df2 ×
1

2

df1 = µ× µ× (M − µ)− σ2

1
2 ×M × σ2

df2 = df1 ×
M − µ

µ

"kw-beta-f", F-approximation of the Kruskal-Wallis incomplete Beta distribution approximation
(Kruskal & Wallis, 1952, p. 610)

sig. ≈ 1− F (Fα, df1, df2)

Fα =
H × (M − µ)

µ× (M −H)

Wallace F distribution approximations (Wallace, 1959, p. 226)

sig. = 1− F
(
F2, df

i
1, df

i
2

)
With:

F2 =
(n− k)×H

(k − 1)× (n− 1−H)

df i
1 = (k − 1)× di

df i
2 = (n− k)× di
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Wallace Beta distribution approximations (Wallace, 1959, p. 226)

sig. ≈ 1− β (B2, α, β)

B2 =
H

n− 1

α = df1 ×
1

2

β = df2 ×
1

2

"wallace-f1" and "wallace-b1"

di =
(n− k)× (k − 1)− σ2

1
2 × (n− 1)× σ2

"wallace-f2" and "wallace-b2"

di = 1− 6× (n+ 1)

5× (n− 1)× (n+ 1.2)

"wallace-f3" and "wallace-b3"
di = 1

"ids", Iman-Davenport Satterwaite approximation (Iman & Davenport, 1976, p. 1338)

sig. = 1− F (F2, df1, df2)

With:
df1 = k − 1

df2 =

(∑k
i=1 (ni − 1)× vi

)2
∑k

i=1
((ni−1)×vi)

2

ni−1

vi =

∑ni

j=1 (ri,j − r̄i)
2

ni − 1

r̄i =

∑ni

j=1 ri,j

ni

Symbols used:

• k, the number of categories
• tj , the frequency of the j-th unique rank.
• n, the total sample size
• ni, the number of scores in category i
• ri,j , the rank of the j-th score in category i
• Ri, the sum of the ranks in category i
• r̄i, the average of the ranks in category i
• r̄, the average of all ranks
• χ2 (. . . ), the cumulative distribution function of the chi-square distribution.
• F (. . . ), the cumulative distribution function of the F distribution.
• β (. . . ), the cumulative distribution function of the beta distribution.

I have not been able to find an exact distribution for H in R. A good starting point might be Choi et
al. (2003) and let me know if you manage.
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Value

Returns a dataframe with:

n the sample size

H the H value

Depending on the test used additional items might be added. In case of a chi-square approximation

statistic if not the same as H, the chi-square value used

df the degrees of freedom

In case of a gamma, or beta approximation

statistic the test statistic used

alpha the alpha value used

beta the beta value used

In case of a F approximation

statistic the test statistic used

df1 the first degrees of freedom

df2 the second degrees of freedom

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Iman, R. L., & Davenport, J. M. (1976). New approximations to the exact distribution of the
kruskal-wallis test statistic. Communications in Statistics - Theory and Methods, 5(14), 1335–1348.
doi:10.1080/03610927608827446

Kruskal, W. H., & Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis. Journal of
the American Statistical Association, 47(260), 583–621. doi:10.1080/01621459.1952.10483441

Wallace, D. L. (1959). Simplified beta-approximations to the Kruskal-Wallis H test. Journal of the
American Statistical Association, 54(285), 225. doi:10.2307/2282148

ts_mann_whitney Mann-Whitney U Test

Description

The Mann-Whitney U and Wilcoxon Rank Sum test are the same. Mann and Whitney simply
expanded on the ideas from Wilcoxon.

The test will compare the distribution of ranks between two categories. The assumption is that the
two categories have the same mean rank (which often is stated simplified as having the same median
in the population).

https://PeterStatistics.com
https://www.youtube.com/stikpet
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Usage

ts_mann_whitney(
catField,
ordField,
categories = NULL,
levels = NULL,
method = "exact",
cc = TRUE

)

Arguments

catField A vector or dataframe with the group data

ordField A vector or dataframe with the scores data

categories : optional list with the two categories to use from catField. If not set the first
two found will be used

levels optional list with the scores in order

method c("exact", "appr") exact method or normal approximation

cc boolean to indicate the use of a continuity correction

Details

The formula used is (Mann & Whitney, 1947, p. 51):

Ui = Ri −
ni × (ni + 1)

2

With:

Ri =

ni∑
j=1

ri,j

For an approximation the following is used:

sig. = 2× (1− Z (z))

With:

z =
Ui − n1×n2

2

SE

SE =

√√√√ n1 × n2

n× (n− 1)
×

(
n3 − n

12
−
∑
i

Ti

)

Ti =
t3i − ti
12

n = n1 + n2

If a continuity correction is used the z-value is calculated using:

zcc = z − 0.5

SE

Symbols used:
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• ni the sample size of category i

• n the total sample size

• ri,j the j-th rank of category i

The ties correction (T ) can be found in Lehmann and D’Abrera (1975, p. 20)

For the exact distribution the Mann-Whitney-Wilcoxon distribution is used, from the pwilcox()
function from R.

Wilcoxon (1945) had developed this test earlier for the case when both categories have the same
sample size, and Mann and Whitney expanded on this.

Value

A dataframe with:

n the sample size

U1 the Mann-Whitney U score of the first category

U2 the Mann-Whitney U score of the second category

statistic test statistic

pValue significance (p-value)

test description of the test used

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Lehmann, E. L., & D’Abrera, H. J. M. (1975). Nonparametrics: Statistical methods based on ranks.
Holden-Day.

Mann, H. B., & Whitney, D. R. (1947). On a Test of Whether one of Two Random Variables
is Stochastically Larger than the Other. The Annals of Mathematical Statistics, 18(1), 50–60.
https://doi.org/10.1214/aoms/1177730491

Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics Bulletin, 1(6), 80.
https://doi.org/10.2307/3001968

Examples

#Example 1: dataframe
dataFile = "https://peterstatistics.com/Packages/ExampleData/GSS2012a.csv"
df1 <- read.csv(dataFile, sep=",", na.strings=c("", "NA"))
myLevels = c('Not scientific at all', 'Not too scientific', 'Pretty scientific', 'Very scientific')
ts_mann_whitney(df1['sex'], df1['accntsci'], levels=myLevels)

#Example 2: vectors
binary = c("apple", "apple", "apple", "peer", "peer", "peer", "peer")
ordinal = c(4, 3, 1, 6, 5, 7, 2)
ts_mann_whitney(binary, ordinal, categories=c("peer", "apple"))

https://PeterStatistics.com
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ts_mcnemar_bowker (McNemar-)Bowker Test

Description

The Bowker test (Bowker, 1948) is an extension of the McNemar (1947) test, which was only for
2x2 tables.

It tests if there is a change in symmetric opinion changes. It assumes there is no change, and if the
p-value is below a pre-set threshold (usually 0.05) this assumption is rejected.

Usage

ts_mcnemar_bowker(field1, field2, categories = NULL, cc = FALSE)

Arguments

field1 vector, the first categorical field

field2 vector, the first categorical field

categories vector, optional, order and/or selection for categories of field1 and field2

cc boolean, optional, use of a continuity correction (default is False)

Details

The formula used is (Bowker, 1948, p. 573):

χ2
B =

r−1∑
i=1

c∑
j=i+1

(Fi,j − Fj,i)
2

Fi,j + Fj,i

df =
r × (r − 1)

2
=

c× (c− 1)

2

sig. = 1− χ2 (χB)

Symbols used

• r is the number of rows (categories in the first variable)

• c is the number of columns (categories in the second variable)

• n is the total number of scores

• Fi,j is the frequency (count) of scores equal to the i-th category in the first variable, and the
j-th category in the second.

Value

Dataframe with:

n the sample size

statistic the chi-squared value

df the degrees of freedom used in the test

p-value the significance (p-value)
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Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Bowker, A. H. (1948). A test for symmetry in contingency tables. Journal of the American Statis-
tical Association, 43(244), 572–574. doi:10.2307/2280710
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ts_mehrotra_owa Mehrotra Test

Description

Tests if the means (averages) of each category could be the same in the population.

If the p-value is below a pre-defined threshold (usually 0.05), the null hypothesis is rejected, and
there are then at least two categories who will have a different mean on the scaleField score in the
population.

Mehrotra (1997) modified the calculation for the first degrees of freedom in the Brown-Forsythe
test for means, all other values are the same.

There are quite some alternatives for this, the stikpet library has Fisher, Welch, James, Box, Scott-
Smith, Brown-Forsythe, Alexander-Govern, Mehrotra modified Brown-Forsythe, Hartung-Agac-
Makabi, Özdemir-Kurt and Wilcox as options. See the notes from ts_fisher_owa() for some discus-
sion on the differences.

Usage

ts_mehrotra_owa(nomField, scaleField, categories = NULL)

Arguments

nomField the groups variable

scaleField the numeric scores variable

categories vector, optional. the categories to use from catField

Details

The formula used (Mehrotra, 1997, p. 11141):

FM =

∑k
j=1 nj × (x̄j − x̄)

2∑k
j=1

(
1− nj

n

)
× s2j

df1 =

(∑k
j=1 s

2
j −

nj×s2j
n

)2
∑k

j=1 s
4
j +

(∑k
j=1 nj×s2j

n

)2

− 2×
∑k

j=1 nj×s4j
n
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df2 =

(∑k
j=1

(
1− nj

n

)
× s2j

)2
∑k

j=1
(1−

nj
n )×s4j

nj−1

sig. = 1− F (FBF , df1, df2)

With:

s2j =

∑nj

i=1 (xi,j − x̄j)
2

nj − 1

x̄j =

∑nj

i=1 xi,j

nj

x̄ =

∑k
i=1 nj × x̄j

n

n =

k∑
j=1

nj

Symbols:

• xi,j the i-th score in category j

• k the number of categories

• n the total sample size

• nj the sample size of category j

• x̄j the sample mean of category j

• s2j the sample variance of the scores in category j

• df the degrees of freedom

• F (. . . , . . . , . . . ) the cumulative distribution function of the F distribution.

The same as the Brown-Forsythe test for means, except for df1.

Value

A dataframe with:

n the sample size

k the number of categories

statistic the test statistic (F value)

df1 the degrees of freedom 1

df2 the degrees of freedom 2

p-value the significance (p-value)

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Mehrotra, D. V. (1997). Improving the Brown-Forsythe solution to the generalized Behrens-Fisher
problem. Communications in Statistics - Simulation and Computation, 26(3), 1139–1145. doi:10.1080/03610919708813431

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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ts_mod_log_likelihood_gof

Mod-Log Likelihood Test of Goodness-of-Fit

Description

A test that can be used with a single nominal variable, to test if the probabilities in all the categories
are equal (the null hypothesis). If the test has a p-value below a pre-defined threshold (usually 0.05)
the assumption they are all equal in the population will be rejected.

There are quite a few tests that can do this. Perhaps the most commonly used is the Pearson chi-
square test, but also an exact multinomial, G-test, Freeman-Tukey, Neyman, Cressie-Read, and
Freeman-Tukey-Read test are possible.

This function is shown in this YouTube video and the test is also described at PeterStatistics.com

Usage

ts_mod_log_likelihood_gof(
data,
expCounts = NULL,
cc = c("none", "yates", "yates2", "pearson", "williams")

)

Arguments

data A vector with the data

expCounts Optional dataframe with the categories and expected counts

cc Optional continuity correction. Either "none" (default), "yates", "pearson", or
"williams"

Details

The formula used (Cressie & Read, 1984, p. 441):

χ2
MLR = 2×

k∑
i=1

(
Ei × ln

(
Ei

Fi

))
df = k − 1

sig. = 1− χ2
(
χ2
MLR, df

)
With:

n =

k∑
i=1

Fi

If no expected counts provided:
Ei =

n

k

else:

Ei = n× Epi

np

https://youtu.be/RP8zn0Dhr8g
https://peterstatistics.com/Terms/Tests/ModLogLikelihood.html
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np =

k∑
i=1

Epi

Symbols used:

• k the number of categories

• Fi the (absolute) frequency of category i

• Ei the expected frequency of category i

• Epi the provided expected frequency of category i

• n the sample size, i.e. the sum of all frequencies

• np the sum of all provided expected counts

• χ2 (. . . ) the chi-square cumulative density function

Cressie and Read (1984) is not the original source, but the source where I found the formula.

The Yates continuity correction (cc="yates") is calculated using (Yates, 1934, p. 222):

F ∗
i =


Fi − 0.5 if Fi > Ei

Fi + 0.5 if Fi < Ei

Fi if Fi = Ei

In some cases the Yates correction is slightly changed to (yates2) (Allen, 1990, p. 523):

F ∗
i =


Fi − 0.5 if Fi − 0.5 > Ei

Fi + 0.5 if Fi + 0.5 < Ei

Fi else

χ2
MLRY = 2×

k∑
i=1

(
F ∗
i × ln

(
F ∗
i

Ei

))

Where if Ei = 0 then Ei × ln
(

Ei

F∗
i

)
= 0

Note that the Yates correction is usually only considered if there are only two categories. Some also
argue this correction is too conservative (see for details Haviland (1990)).

The Pearson correction (cc="pearson") is calculated using (E.S. Pearson, 1947, p. 157):

χ2
MLREP = χ2

MLR × n− 1

n

The Williams correction (cc="williams") is calculated using (Williams, 1976, p. 36):

χ2
MLRW =

χ2
MLR

q

With:

q = 1 +
k2 − 1

6× n× df
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Value

Dataframe with:

n the sample size

k the number of categories

statistic the chi-square statistic

df the degrees of freedom

pValue two-sided p-value

minExp the minimum expected count

percBelow5 the percentage of expected counts below 5

test used a description of the test used

Before, After and Alternatives

BBefore this an impression using a frequency table or a visualisation might be helpful: tab_frequency,
for a frequency table vi_bar_simple, for Simple Bar Chart. vi_cleveland_dot_plot, for Cleve-
land Dot Plot. vi_dot_plot, for Dot Plot. vi_pareto_chart, for Pareto Chart. vi_pie, for Pie
Chart.

After this you might an effect size measure: es_cohen_w, for Cohen w. es_cramer_v_gof, for
Cramer’s V for Goodness-of-Fit. es_fei, for Fei. es_jbm_e, for Johnston-Berry-Mielke E.

or perform a post-hoc test: ph_pairwise_bin, for Pairwise Binary Tests. ph_pairwise_gof, for
Pairwise Goodness-of-Fit Tests. ph_residual_gof_bin, for Residuals Tests using Binary tests.
ph_residual_gof_gof, for Residuals Using Goodness-of-Fit Tests.

Alternative tests: ts_pearson_gof, for Pearson Chi-Square Goodness-of-Fit Test. ts_freeman_tukey_gof,
for Freeman-Tukey Test of Goodness-of-Fit. ts_freeman_tukey_read, for Freeman-Tukey-Read
Test of Goodness-of-Fit. ts_g_gof, for G (Likelihood Ratio) Goodness-of-Fit Test. ts_multinomial_gof,
for Multinomial Goodness-of-Fit Test. ts_neyman_gof, for Neyman Test of Goodness-of-Fit.
ts_powerdivergence_gof, for Power Divergence GoF Test.

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Cressie, N., & Read, T. R. C. (1984). Multinomial goodness-of-fit tests. Journal of the Royal Statis-
tical Society: Series B (Methodological), 46(3), 440–464. doi:10.1111/j.2517-6161.1984.tb01318.x

Haviland, M. G. (1990). Yates’s correction for continuity and the analysis of 2 × 2 contingency
tables. Statistics in Medicine, 9(4), 363–367. doi:10.1002/sim.4780090403

Pearson, E. S. (1947). The choice of statistical tests illustrated on the Interpretation of data classed
in a 2 × 2 table. Biometrika, 34(1/2), 139–167. doi:10.2307/2332518

Williams, D. A. (1976). Improved likelihood ratio tests for complete contingency tables. Biometrika,
63(1), 33–37. doi:10.2307/2335081

Yates, F. (1934). Contingency tables involving small numbers and the chi square test. Supplement
to the Journal of the Royal Statistical Society, 1(2), 217–235. doi:10.2307/2983604
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Examples

#Example 1: dataframe
dataFile = "https://peterstatistics.com/Packages/ExampleData/GSS2012a.csv"
df1 <- read.csv(dataFile, sep=",", na.strings=c("", "NA"))
ex1 = df1['mar1']
ts_mod_log_likelihood_gof(ex1)

#Example 2: dataframe with various settings
ex2 = df1['mar1']
eCounts = data.frame(c("MARRIED", "DIVORCED", "NEVER MARRIED", "SEPARATED"), c(5,5,5,5))
ts_mod_log_likelihood_gof(ex2, expCounts=eCounts, cc="yates")
ts_mod_log_likelihood_gof(ex2, expCounts=eCounts, cc="pearson")
ts_mod_log_likelihood_gof(ex2, expCounts=eCounts, cc="williams")

#Example 3: a list
ex3 = c("MARRIED", "DIVORCED", "MARRIED", "SEPARATED", "DIVORCED", "NEVER MARRIED",
"DIVORCED", "DIVORCED", "NEVER MARRIED", "MARRIED", "MARRIED", "MARRIED",
"SEPARATED", "DIVORCED", "NEVER MARRIED", "NEVER MARRIED", "DIVORCED", "DIVORCED", "MARRIED")
ts_mod_log_likelihood_gof(ex3)

ts_mod_log_likelihood_ind

Mod-Log Likelihood Test of Independence

Description

Mod-Log Likelihood Test of Independence

Usage

ts_mod_log_likelihood_ind(
field1,
field2,
categories1 = NULL,
categories2 = NULL,
cc = NULL

)

Arguments

field1 list or dataframe with the first categorical field

field2 list or dataframe with the second categorical field

categories1 optional list with order and/or selection for categories of field1

categories2 optional list with order and/or selection for categories of field2

cc optional methdod for continuity correction. Either NULL (default), "yates",
"pearson", "williams".
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Details

The formula used (Cressie & Read, 1984, p. 441):

MG = 2×
r∑

i=1

c∑
j=1

(
Ei,j × ln

(
Ei,j

Fi,j

))
df = (r − 1)× (c− 1)

sig. = 1− χ2 (MG, df)

With:

n =

r∑
i=1

c∑
j=1

Fi,j

Ei,j =
Ri × Cj

n

Ri =

c∑
j=1

Fi,j

Cj =

r∑
i=1

Fi,j

Cressie and Read (1984) is not the original source, but the source where I found the formula.

The Yates correction (yates) is calculated using (Yates, 1934, p. 222):

Use instead of Fi,j the adjusted version defined by:

F ∗
i,j =


Fi,j − 0.5 if Fi,j > Ei,j

Fi,j if Fi,j = Ei,j

Fi,j + 0.5 if Fi,j < Ei,j

The Pearson correction (pearson) is calculated using (E.S. Pearson, 1947, p. 157):

χ2
PP = χ2

P × n− 1

n

The Williams correction (williams) is calculated using (Williams, 1976, p. 36):

χ2
PW =

χ2
P

q

With:

q = 1 +

(
n×

(∑r
i=1

1
Ri

)
− 1
)
×
(
n×

(∑c
j=1

1
Cj

)
− 1
)

6× n× df

Value

A dataframe with:

n the sample size

n rows number of categories used in first field

n col. number of categories used in second field

statistic the test statistic (chi-square value)
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df the degrees of freedom

p-value the significance (p-value)

min. exp. the minimum expected count

prop. exp. below 5

proportion of cells with expected count less than 5

test description of the test used

Author(s)

P. Stikker

Please visit: https://PeterStatistics.com

YouTube channel: https://www.youtube.com/stikpet

References

Cressie, N., & Read, T. R. C. (1984). Multinomial goodness-of-fit tests. Journal of the Royal
Statistical Society: Series B (Methodological), 46(3), 440–464. https://doi.org/10.1111/j.2517-
6161.1984.tb01318.x

Pearson, E. S. (1947). The choice of statistical tests illustrated on the Interpretation of data classed
in a 2 × 2 table. Biometrika, 34(1/2), 139–167. https://doi.org/10.2307/2332518

Williams, D. A. (1976). Improved likelihood ratio tests for complete contingency tables. Biometrika,
63(1), 33–37. https://doi.org/10.2307/2335081

Yates, F. (1934). Contingency tables involving small numbers and the chi square test. Supplement
to the Journal of the Royal Statistical Society, 1(2), 217–235. https://doi.org/10.2307/2983604

Examples

nom1 <- c("female", "female","female","female","female","female","female",
"female", "female","female","female", "male", "male", "male", "male", "male",
"male", "male", "male", "male", "male", "male", "male", "male", "male", "male",
"male","male", "male", "male", "male", "male", "male", "male", "male", "male",
"male", "male", "male", "male", "male", "male")
nom2 <- c("nl", "nl","nl","nl","nl","nl","nl","nl", "other", "other", "other",
"nl","nl","nl","nl","nl","nl","nl","nl","nl","nl","nl","nl","nl","nl","nl","nl",
"other", "other", "other", "other", "other", "other", "other", "other", "other",
"other", "other", "other", "other", "other", "other")
ts_g_ind(nom1, nom2)
ts_g_ind(nom1, nom2, cc="yates")
ts_g_ind(nom1, nom2, cc="pearson")
ts_g_ind(nom1, nom2, cc="williams")

ts_mood_median Mood Median Test
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Description

This test looks if the median from different categories would be the same in the population. If not, at
least one is different then at least one other category. A Kruskal-Wallis test (see ts_kruksal_wallis())
is very similar but checks the average ranks instead of median.

The test only looks at the number of scores above the overall median and those that are equal or
below. A cross table is made with each category and the numbers below and above the overall
median. From this table a test of independence can be used.

Usage

ts_mood_median(
catField,
ordField,
categories = NULL,
levels = NULL,
test = "pearson",
cc = c(NULL, "yates", "pearson", "williams"),
lambd = 2/3

)

Arguments

catField vector with categories

ordField vector with the scores

categories vector, optional. the categories to use from catField

levels vector, optional. the levels or order used in ordField.

test string, optional. the test of independence to use. Default is "pearson". Other
options are "pearson", "fisher", "freeman-tukey", "g", "mod-log", "neyman",
"power"

cc : string, optional. method for continuity correction. Either NULL (default),
"yates", "pearson", "williams"

lambd float or string, optional. either name of test or specific value. Default is "cressie-
read" i.e. lambda of 2/3. Only applies to Power Divergence test. Other options
include float, "cressie-read", "likelihood-ratio", "mod-log", "pearson", "freeman-
tukey", "neyman"

Details

The Mood Median test creates a 2xk cross table, with k being the number of categories. The two
rows are one for the number of scores in that category that are above the overall median, and the
second row the number of scores in that category that are equal or below the overall median.

A chi-square test of independence on this cross table can then be performed. There are quite some
different options for this:

• "pearson", will perform a Pearson chi-square test of independence using the ts_pearson_ind()
function.

• "fisher", will perform a Fisher exact test using the ts_fisher() function, but only if there are 2
categories, if there are more the test will be set to "pearson"

• "freeman-tukey", will perform a Freeman-Tukey test of independence using the ts_freeman_tukey_ind()
function
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• "g", will perform a G test of independence using the ts_g_ind() function

• "mod-log", will perform a Mod-Log Likelihood test of independence using the ts_mod_log_likelihood_ind()
function

• "neyman", will perform a Neyman test of independence using the ts_neyman_ind() function

• "power", will perform a Power Divergence test of independence using the ts_powerdivergence_ind()
function.

The formula using the default Pearson test is:

χ2
M =

2∑
i=1

k∑
j=1

(Fi,j − Ei,j)
2

Ei,j

df = k − 1

sig. = 1− χ2
(
χ2
M , df

)
With:

Ei,j =
Ri × Cj

n

Ri =

k∑
j=1

Fi,j

Cj =

2∑
i=1

Fi,j

n =

2∑
i=1

k∑
j=1

Fi,j =

2∑
i=1

Ri =

k∑
j=1

Cj

The original source for the formula is most likely Mood (1950), but the ones shown are based on
Brown and Mood (1951).

Symbols used:

• k, the number of categories (columns)

• F1,j , the number of scores is category j that are above the overall median

• F2,j , the number of scores is category j that are equal or below the overall median

• Ei,j , the expected count in row i and column j.

• Ri, the row total of row i

• Cj , the column total of column j

• n, the overall total.

• df , the degrees of freedom

• χ2 (. . . ), the cumulative distribution function of the chi-square distribution.

Value

A dataframe with the results of the specified test.

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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References

Brown, G. W., & Mood, A. M. (1951). On median tests for linear hypotheses. Proceedings of the
Second Berkeley Symposium on Mathematical Statistics and Probability, 2, 159–167.

Mood, A. M. (1950). Introduction to the theory of statistics. McGraw-Hill.

ts_multinomial_gof Exact Multinomial Test of Goodness-of-Fit

Description

A test that can be used with a single nominal variable, to test if the probabilities in all the categories
are equal (the null hypothesis). If the test has a p-value below a pre-defined threshold (usually 0.05)
the assumption they are all equal in the population will be rejected.

There are quite a few tests that can do this. Perhaps the most commonly used is a Pearson chi-
square test, but also a G-test, Freeman-Tukey, Neyman, Mod-Log Likelihood and Cressie-Read test
are possible.

McDonald (2014, p. 82) suggests to always use this exact test as long as the sample size is less than
1000 (which was just picked as a nice round number, when n is very large the exact test becomes
computational heavy even for computers).

This function is shown in this YouTube video and the test is also described at PeterStatistics.com

Usage

ts_multinomial_gof(data, expCounts = NULL)

Arguments

data A vector with the data

expCounts Optional dataframe with the categories and expected counts

Details

The exact multinomial test of goodness of fit is done in four steps

Step 1: Determine the probability of the observed counts using the probability mass function of the
multinomial distribution

Step 2: Determine all possible permutations with repetition that create a sum equal to the sample
size over the k-categories.

Step 3: Determine the probability of each of these permutations using the probability mass function
of the multinomial distribution.

Step 4: Sum all probabilities found in step 3 that are equal or less than the one found in step 1.

Value

Dataframe with:

pObs probability of the observed data

ncomb number of combinations used

pValue two-sided p-value

test used a description of the test used

https://youtu.be/z4P_GuodZvk
https://peterstatistics.com/Terms/Tests/Multinomial-GoF.html
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Before, After and Alternatives

BBefore this an impression using a frequency table or a visualisation might be helpful: tab_frequency,
for a frequency table vi_bar_simple, for Simple Bar Chart. vi_cleveland_dot_plot, for Cleve-
land Dot Plot. vi_dot_plot, for Dot Plot. vi_pareto_chart, for Pareto Chart. vi_pie, for Pie
Chart.

After this you want to perform a post-hoc test: ph_pairwise_bin, for Pairwise Binary Tests.
ph_pairwise_gof, for Pairwise Goodness-of-Fit Tests. ph_residual_gof_bin, for Residuals
Tests using Binary tests. ph_residual_gof_gof, for Residuals Using Goodness-of-Fit Tests.

Alternative tests: ts_pearson_gof, for Pearson Chi-Square Goodness-of-Fit Test. ts_freeman_tukey_gof,
for Freeman-Tukey Test of Goodness-of-Fit. ts_freeman_tukey_read, for Freeman-Tukey-Read
Test of Goodness-of-Fit. ts_g_gof, for G (Likelihood Ratio) Goodness-of-Fit Test. ts_mod_log_likelihood_gof,
for Mod-Log Likelihood Test of Goodness-of-Fit. ts_neyman_gof, for Neyman Test of Goodness-
of-Fit. ts_powerdivergence_gof, for Power Divergence GoF Test.

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

McDonald, J. H. (2014). Handbook of biological statistics (3rd ed.). Sparky House Publishing.

Examples

#Example 1: dataframe
dataFile = "https://peterstatistics.com/Packages/ExampleData/GSS2012a.csv"
df1 <- read.csv(dataFile, sep=",", na.strings=c("", "NA"))
ex1 = df1[1:20, 'mar1']
ts_multinomial_gof(ex1)

#Example 2: dataframe with various settings
ex2 = df1[1:20, 'mar1']
eCounts = data.frame(c("MARRIED", "DIVORCED", "NEVER MARRIED", "SEPARATED"), c(5,5,5,5))
ts_multinomial_gof(ex2, expCounts=eCounts)

#Example 3: a list
ex3 = c("MARRIED", "DIVORCED", "MARRIED", "SEPARATED", "DIVORCED", "NEVER MARRIED",
"DIVORCED", "DIVORCED", "NEVER MARRIED", "MARRIED", "MARRIED", "MARRIED", "SEPARATED",
"DIVORCED", "NEVER MARRIED", "NEVER MARRIED", "DIVORCED", "DIVORCED", "MARRIED")
ts_multinomial_gof(ex3)

ts_neyman_gof Neyman Test of Goodness-of-Fit

Description

A test that can be used with a single nominal variable, to test if the probabilities in all the categories
are equal (the null hypothesis). If the test has a p-value below a pre-defined threshold (usually 0.05)
the assumption they are all equal in the population will be rejected.

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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There are quite a few tests that can do this. Perhaps the most commonly used is the Pearson chi-
square test, but also an exact multinomial, G-test, Freeman-Tukey, Mod-Log Likelihood, Cressie-
Read, and Freeman-Tukey-Read test are possible.

This function is shown in this YouTube video and the test is also described at PeterStatistics.com

Usage

ts_neyman_gof(
data,
expCounts = NULL,
cc = c("none", "yates", "pearson", "williams")

)

Arguments

data A vector or dataframe

expCounts Optional dataframe with the categories and expected counts

cc Optional continuity correction. Either "none" (default), "yates", "yates2", "pear-
son", or "williams"

Details

The formula used is (Neyman, 1949, p. 250):

χ2
N =

k∑
i=1

(Oi − Ei)
2

Oi

df = k − 1

sig. = 1− χ2
(
χ2
N , df

)
With:

n =

k∑
i=1

Fi

If no expected counts provided:
Ei =

n

k

else:
Ei = n× Epi

np

np =

k∑
i=1

Epi

Symbols used:

• k the number of categories

• Fi the (absolute) frequency of category i

• Ei the expected frequency of category i

• Epi
the provided expected frequency of category i

• n the sample size, i.e. the sum of all frequencies

https://youtu.be/qNp0alJB6Wc
https://peterstatistics.com/Terms/Tests/Neyman.html
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• np the sum of all provided expected counts

• χ2 (. . . ) the chi-square cumulative density function

The Yates correction (yates) is calculated using (Yates, 1934, p. 222):

χ2
NY =

k∑
i=1

(|Fi − Ei| − 0.5)
2

Oi

In some cases the Yates correction is slightly changed to (yates2) (Allen, 1990, p. 523):

χ2
NY =

k∑
i=1

max (0, (|Fi − Ei| − 0.5))
2

Oi

Note that the Yates correction is usually only considered if there are only two categories. Some also
argue this correction is too conservative (see for details Haviland (1990)).

The Pearson correction (pearson) is calculated using (E.S. Pearson, 1947, p. 157):

χ2
NP = χ2

N × n− 1

n

The Williams correction (williams) is calculated using (Williams, 1976, p. 36):

χ2
NW =

χ2
N

q

With:

q = 1 +
k2 − 1

6× n× df

Value

Dataframe with:

n the sample size

k the number of categories

statistic the chi-square statistic

df the degrees of freedom

pValue two-sided p-value

minExp the minimum expected count

percBelow5 the percentage of expected counts below 5

testUsed a description of the test used

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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Examples

#Example 1: dataframe
dataFile = "https://peterstatistics.com/Packages/ExampleData/GSS2012a.csv"
df1 <- read.csv(dataFile, sep=",", na.strings=c("", "NA"))
ex1 = df1['mar1']
ts_neyman_gof(ex1)

#Example 2: dataframe with various settings
ex2 = df1['mar1']
eCounts = data.frame(c("MARRIED", "DIVORCED", "NEVER MARRIED", "SEPARATED"), c(5,5,5,5))
ts_neyman_gof(ex2, expCounts=eCounts, cc="yates")
ts_neyman_gof(ex2, expCounts=eCounts, cc="pearson")
ts_neyman_gof(ex2, expCounts=eCounts, cc="williams")

#Example 3: a list
ex3 = c("MARRIED", "DIVORCED", "MARRIED", "SEPARATED", "DIVORCED", "NEVER MARRIED",
"DIVORCED", "DIVORCED", "NEVER MARRIED", "MARRIED", "MARRIED", "MARRIED", "SEPARATED",
"DIVORCED", "NEVER MARRIED", "NEVER MARRIED", "DIVORCED", "DIVORCED", "MARRIED")
ts_neyman_gof(ex3)

ts_neyman_ind Neyman Test of Independence

Description

This test is similar as a Pearson Chi-Square test of independence. If the significance of this test is
below 0.05 (or another pre-defined threshold), the two nominal variables have a significant associ-
ation.

The test compares the observed counts of the cross table with the so-called expected counts. The
expected values are the number of respondents you would expect if the two variables would be
independent. See the Pearson Chi-Square test of independence for more details on expected counts.

One problem though is that the test should only be used if not too many cells have a so-called
expected count, of less than 5, and the minimum expected count is at least 1. So you will also have
to check first if these conditions are met. Most often ‘not too many cells’ is fixed at no more than
20% of the cells. This is often referred to as ’Cochran conditions’, after Cochran (1954, p. 420).
Note that for example Fisher (1925, p. 83) is more strict, and finds that all cells should have an
expected count of at least 5.
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Usage

ts_neyman_ind(
field1,
field2,
categories1 = NULL,
categories2 = NULL,
cc = NULL

)

Arguments

field1 list or dataframe with the first categorical field

field2 list or dataframe with the second categorical field

categories1 optional list with order and/or selection for categories of field1

categories2 optional list with order and/or selection for categories of field2

cc optional methdod for continuity correction. Either NULL (default), "yates",
"pearson", "williams".

Details

The formula used is (Neyman, 1949, p. 250):

χ2
N =

r∑
i=1

c∑
j=1

(Fi,j − Ei,j)
2

Fi,j

df = (r − 1)× (c− 1)

sig. = 1− χ2
(
χ2
N , df

)
With:

n =

r∑
i=1

c∑
j=1

Fi,j

Ei,j =
Ri × Cj

n

Ri =

c∑
j=1

Fi,j

Cj =

r∑
i=1

Fi,j

Symbols used:

• r the number of categories in the first variable (the number of rows)

• c the number of categories in the second variable (the number of columns)

• Fi,j the observed count in row i and column j

• Ei,j the expected count in row i and column j

• Ri the i-th row total

• Cj the j-th column total

• n the sum of all counts
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• χ2 (. . . ) the chi-square cumulative density function

The Yates correction (yates) is calculated using (Yates, 1934, p. 222):

Use instead of Fi,j the adjusted version defined by:

F ∗
i,j =


Fi,j − 0.5 if Fi,j > Ei,j

Fi,j if Fi,j = Ei,j

Fi,j + 0.5 if Fi,j < Ei,j

The Pearson correction (pearson) is calculated using (E.S. Pearson, 1947, p. 157):

χ2
PP = χ2

P × n− 1

n

The Williams correction (williams) is calculated using (Williams, 1976, p. 36):

χ2
PW =

χ2
P

q

With:

q = 1 +

(
n×

(∑r
i=1

1
Ri

)
− 1
)
×
(
n×

(∑c
j=1

1
Cj

)
− 1
)

6× n× df

Value

A dataframe with:

n the sample size
n rows number of categories used in first field
n col. number of categories used in second field
statistic the test statistic (chi-square value)
df the degrees of freedom
p-value the significance (p-value)
min. exp. the minimum expected count
prop. exp. below 5

proportion of cells with expected count less than 5
test description of the test used
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417. doi:10.2307/3001616

Fisher, R. A. (1925). Statistical methods for research workers. Oliver and Boyd.

McDonald, J. H. (2014). Handbook of biological statistics (3rd ed.). Sparky House Publishing.

Neyman, J. (1949). Contribution to the theory of the chi-square test. Berkeley Symposium on Math.
Stat, and Prob, 239–273. doi:10.1525/9780520327016-030

Pearson, E. S. (1947). The choice of statistical tests illustrated on the Interpretation of data classed
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Williams, D. A. (1976). Improved likelihood ratio tests for complete contingency tables. Biometrika,
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Yates, F. (1934). Contingency tables involving small numbers and the chi square test. Supplement
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ts_ozdemir_kurt_owa Özdemir-Kurt Test

Description

Tests if the means (averages) of each category could be the same in the population.

If the p-value is below a pre-defined threshold (usually 0.05), the null hypothesis is rejected, and
there are then at least two categories who will have a different mean on the scaleField score in the
population.

There are quite some alternatives for this, the stikpet library has Fisher, Welch, James, Box, Scott-
Smith, Brown-Forsythe, Alexander-Govern, Mehrotra modified Brown-Forsythe, Hartung-Agac-
Makabi, Özdemir-Kurt and Wilcox as options. See the notes from ts_fisher_owa() for some discus-
sion on the differences.

Usage

ts_ozdemir_kurt_owa(nomField, scaleField, categories = NULL)

Arguments

nomField the groups variable

scaleField the numeric scores variable

categories vector, optional. the categories to use from catField

Details

The formula used (Özdemir & Kurt, 2006, pp. 85-86):

B2 =

k∑
j=1

cj ×

√√√√ln

(
1 +

t2j
vi

)2

df = k − 1

sig. = 1− χ2
(
B2, df

)
With:

χ2
crit = Q

(
chi2crit (1− α, df)

)
tj =

x̄j − x̄w√
s2j
nj

cj =
4× v2j +

5×(2×z2
crit+3)

24

4× v2j + vj +
4×z2

crit+9

12

×√
vj

vj = nj − 1

x̄w =

k∑
j=1

hj × x̄j

hj =
wj

w
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wj =
nj

s2j

w =

k∑
j=1

wj

zcrit = Q
(
Φ
(
1− α

2

))
s2j =

∑nj

i=1 (xi,j − x̄j)
2

nj − 1

x̄j =

∑nj

j=1 xi,j

nj

Symbols used:

• xi,j the i-th score in category j

• k the number of categories

• nj the sample size of category j

• x̄j the sample mean of category j

• s2j the sample variance of the scores in category j

• w∗
j the modified weight for category j

• h∗
j the adjusted modified weight for category j

• df the degrees of freedom

• α the significance level (usually 0.05)

• Q (. . . ) the quantile (inverse) distribution function

• Φ (. . . ) the cumulative density function of the standard normal distribution

• χ2 (. . . ) the cumulative density function of the chi-square distribution

A binary search for a p-value is done such that B2 = χ2
crit.

Value

A dataframe with:

n the sample size

statistic the test statistic (B2 value)

df the degrees of freedom

p-value the significance (p-value)

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Özdemir, A. F., & Kurt, S. (2006). One way fixed effect analysis of variance under variance hetero-
geneity and a solution proposal. Selçuk Journal of Applied Mathematics, 7(2), 81–90.

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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ts_pearson_gof Pearson Chi-Square Test of Goodness-of-Fit

Description

A test that can be used with a single nominal variable, to test if the probabilities in all the categories
are equal (the null hypothesis). If the test has a p-value below a pre-defined threshold (usually 0.05)
the assumption they are all equal in the population will be rejected.

There are quite a few tests that can do this. Perhaps the most commonly used is this Pearson chi-
square test, but also an exact multinomial, G-test, Freeman-Tukey, Neyman, Mod-Log Likelihood
and Cressie-Read test are possible.

The test compares the observed counts with the expected counts. It is often recommended not to
use it if the expected count is at least 5 (Peck & Devore, 2012, p. 593).

A YouTube video with explanation on this test is available here

This function is shown in this YouTube video and the test is also described at PeterStatistics.com

Usage

ts_pearson_gof(
data,
expCounts = NULL,
cc = c("none", "yates", "yates2", "pearson", "williams")

)

Arguments

data A vector with the data

expCounts Optional dataframe with the categories and expected counts

cc Optional continuity correction. Either "none" (default), "yates", "yates2", "pear-
son", or "williams"

Details

The formula used is (Pearson, 1900):

χ2
P =

k∑
i=1

(Oi − Ei)
2

Ei

df = k − 1

sig. = 1− χ2
(
χ2
P , df

)
With:

n =

k∑
i=1

Fi

If no expected counts provided:
Ei =

n

k

https://youtu.be/NVR5dZhp4vY
https://youtu.be/r_txnCmsVD0
https://peterstatistics.com/Terms/Tests/PearsonChiSquare.html
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else:
Ei = n× Epi

np

np =

k∑
i=1

Epi

Symbols used:

• k the number of categories
• Fi the (absolute) frequency of category i
• Ei the expected frequency of category i
• Epi the provided expected frequency of category i
• n the sample size, i.e. the sum of all frequencies
• np the sum of all provided expected counts
• χ2 (. . . ) the chi-square cumulative density function

The Yates correction (yates) is calculated using (Yates, 1934, p. 222):

χ2
PY =

k∑
i=1

(|Fi − Ei| − 0.5)
2

Ei

In some cases the Yates correction is slightly changed to (yates2) (Allen, 1990, p. 523):

χ2
PY =

k∑
i=1

max (0, (|Fi − Ei| − 0.5))
2

Ei

Note that the Yates correction is usually only considered if there are only two categories. Some also
argue this correction is too conservative (see for details Haviland (1990)).

The Pearson correction (pearson) is calculated using (E.S. Pearson, 1947, p. 157):

χ2
PP = χ2

P × n− 1

n

The Williams correction (williams) is calculated using (Williams, 1976, p. 36):

χ2
PW =

χ2
P

q

With:

q = 1 +
k2 − 1

6× n× df

The formula is also used by McDonald (2014, p. 87)

Value

Dataframe with:

n the sample size
k the number of categories
statistic the chi-square statistic
df the degrees of freedom
pValue two-sided p-value
minExp the minimum expected count
percBelow5 the percentage of expected counts below 5
test used a description of the test used
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Before, After and Alternatives

Before this an impression using a frequency table or a visualisation might be helpful: tab_frequency,
for a frequency table vi_bar_simple, for Simple Bar Chart. vi_cleveland_dot_plot, for Cleve-
land Dot Plot. vi_dot_plot, for Dot Plot. vi_pareto_chart, for Pareto Chart. vi_pie, for Pie
Chart.

After this you might an effect size measure: es_cohen_w, for Cohen w. es_cramer_v_gof, for
Cramer’s V for Goodness-of-Fit. es_fei, for Fei. es_jbm_e, for Johnston-Berry-Mielke E.

or perform a post-hoc test: ph_pairwise_bin, for Pairwise Binary Tests. ph_pairwise_gof, for
Pairwise Goodness-of-Fit Tests. ph_residual_gof_bin, for Residuals Tests using Binary tests.
ph_residual_gof_gof, for Residuals Using Goodness-of-Fit Tests.

Alternative tests: ts_freeman_tukey_gof, for Freeman-Tukey Test of Goodness-of-Fit. ts_freeman_tukey_read,
for Freeman-Tukey-Read Test of Goodness-of-Fit. ts_g_gof, for G (Likelihood Ratio) Goodness-
of-Fit Test. ts_mod_log_likelihood_gof, for Mod-Log Likelihood Test of Goodness-of-Fit.
ts_multinomial_gof, for Multinomial Goodness-of-Fit Test. ts_neyman_gof, for Neyman Test
of Goodness-of-Fit. ts_powerdivergence_gof, for Power Divergence GoF Test.

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Allen, A. O. (1990). Probability, statistics, and queueing theory with computer science applications
(2nd ed.). Academic Press.

Haviland, M. G. (1990). Yates’s correction for continuity and the analysis of 2 × 2 contingency
tables. Statistics in Medicine, 9(4), 363–367. doi:10.1002/sim.4780090403

McDonald, J. H. (2014). Handbook of biological statistics (3rd ed.). Sparky House Publishing.

Pearson, E. S. (1947). The choice of statistical tests illustrated on the Interpretation of data classed
in a 2 × 2 table. Biometrika, 34(1/2), 139–167. doi:10.2307/2332518

Pearson, K. (1900). On the criterion that a given system of deviations from the probable in the case
of a correlated system of variables is such that it can be reasonably supposed to have arisen from ran-
dom sampling. Philosophical Magazine Series 5, 50(302), 157–175. doi:10.1080/14786440009463897

Peck, R., & Devore, J. L. (2012). Statistics: The exploration and analysis of data (7th ed).
Brooks/Cole.

Williams, D. A. (1976). Improved likelihood ratio tests for complete contingency tables. Biometrika,
63(1), 33–37. https://doi.org/10.2307/2335081

Yates, F. (1934). Contingency tables involving small numbers and the chi square test. Supplement
to the Journal of the Royal Statistical Society, 1(2), 217–235. doi:10.2307/2983604

Examples

#Example 1: dataframe
dataFile = "https://peterstatistics.com/Packages/ExampleData/GSS2012a.csv"
df1 <- read.csv(dataFile, sep=",", na.strings=c("", "NA"))
#Example 1: dataframe
ex1 = df1['mar1']
ts_pearson_gof(ex1)

#Example 2: dataframe with various settings
ex2 = df1['mar1']

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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eCounts = data.frame(c("MARRIED", "DIVORCED", "NEVER MARRIED", "SEPARATED"), c(5,5,5,5))
ts_pearson_gof(ex2, expCounts=eCounts, cc="yates")
ts_pearson_gof(ex2, expCounts=eCounts, cc="pearson")
ts_pearson_gof(ex2, expCounts=eCounts, cc="williams")

#Example 3: a list
ex3 = c("MARRIED", "DIVORCED", "MARRIED", "SEPARATED", "DIVORCED", "NEVER MARRIED",
"DIVORCED", "DIVORCED", "NEVER MARRIED", "MARRIED", "MARRIED", "MARRIED", "SEPARATED",
"DIVORCED", "NEVER MARRIED", "NEVER MARRIED", "DIVORCED", "DIVORCED", "MARRIED")
ts_pearson_gof(ex3)

ts_pearson_ind Pearson Chi-Square Test of Independence

Description

To test if two nominal variables have an association, the most commonly used test is the Pearson
chi-square test of independence (Pearson, 1900). If the significance of this test is below 0.05, the
two nominal variables have a significant association.

The test compares the observed counts of the cross table with the so-called expected counts. The
expected values are the number of respondents you would expect if the two variables would be
independent.

If for example I had 50 male and 50 female respondents, and 50 agreed with a statement and 50
disagreed with the statement, the expected value for each combination (male-agree, female-agree,
male-disagree, and female-disagree) would be 25.

Note that if in the survey the real results would be that all male disagreed, and all female would
agree, there is a full dependency (i.e. gender fully decides if you agree or disagree), even though
the row and column totals would still be 50. In essence the Pearson chi-square test, checks if your
data is more toward the expected values (independence) or the full dependency one.

One problem though is that the Pearson chi-square test should only be used if not too many cells
have a so-called expected count, of less than 5, and the minimum expected count is at least 1. So
you will also have to check first if these conditions are met. Most often ‘not too many cells’ is fixed
at no more than 20% of the cells. This is often referred to as ’Cochran conditions’, after Cochran
(1954, p. 420). Note that for example Fisher (1925, p. 83) is more strict, and finds that all cells
should have an expected count of at least 5 .

Usage

ts_pearson_ind(
field1,
field2,
categories1 = NULL,
categories2 = NULL,
cc = NULL

)
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Arguments

field1 list or dataframe with the first categorical field

field2 list or dataframe with the second categorical field

categories1 optional list with order and/or selection for categories of field1

categories2 optional list with order and/or selection for categories of field2

cc optional methdod for continuity correction. Either NULL (default), "yates",
"pearson", "williams".

Details

The formula used is (Pearson, 1900, p. 165):

χ2
p =

r∑
i=1

c∑
j=1

(Fi,j − Ei,j)
2

Ei,j

df = (r − 1)× (c− 1)

sig. = 1− χ2
(
χ2
p, df

)
With:

Ei,j =
Ri × Cj

n

Ri =

c∑
j=1

Fi,j

Cj =

r∑
i=1

Fi,j

n =

r∑
i=1

c∑
j=1

Fi,j =

r∑
i=1

Ri =

c∑
j=1

Cj

Symbols:

• r, the number of rows

• c, the number of columns

• Fi,j , the observed count in row i and column j.

• Ei,j , the expected count in row i and column j.

• Ri, the row total of row i

• Cj , the column total of column j

• n, the overall total.

• df , the degrees of freedom

The Yates correction uses F ′
i,j instead of Fi,j , defined as (Yates, 1934, p. 222):

F ′
i,j =


Fi,j − 1

2 if Fi,j > Ei,j

Fi,j +
1
2 if Fi,j < Ei,j

Fi,j if Fi,j = Ei,j
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The Williams correction, adjusts the Pearson chi-square value:

χ2
wil =

χ2
p

q

With:

q = 1 +

(
n×

(∑r
i=1

1
Ri

)
− 1
)
×
(
n×

(∑c
j=1

1
Ci

)
− 1
)

6× n× (r − 1)× (c− 1)

The formula is probably from Williams (1976) but the one shown here is taken from McDonald
(1976, p. 36).

The Pearson correction also adjusts the Pearson chi-square value with (E.S. Pearson, 1947, p. 157):

χ2
epearson =

n− 1

n
× χ2

p

Value

A dataframe with:

n the sample size

n rows number of categories used in first field

n col. number of categories used in second field

statistic the test statistic (chi-square value)

df the degrees of freedom

p-value the significance (p-value)

min. exp. the minimum expected count
prop. exp. below 5

proportion of cells with expected count less than 5

test description of the test used

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations
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in a 2 × 2 table. Biometrika, 34(1/2), 139–167. doi:10.2307/2332518

Pearson, K. (1900). On the criterion that a given system of deviations from the probable in the case
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Yates, F. (1934). Contingency tables involving small numbers and the chi square test. Supplement
to the Journal of the Royal Statistical Society, 1(2), 217–235. doi:10.2307/2983604

https://PeterStatistics.com
https://www.youtube.com/stikpet
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ts_powerdivergence_gof

Power Divergence Goodness-of Fit Tests

Description

A test that can be used with a single nominal variable, to test if the probabilities in all the categories
are equal (the null hypothesis)

There are quite a few tests that can do this. Perhaps the most commonly used is the Pearson chi-
square test (χ2), but also an exact multinomial, G-test (G2), Freeman-Tukey (T 2), Neyman (NM2),
Mod-Log Likelihood (GM2), and Freeman-Tukey-Read test are possible.

Cressie and Read (1984, p. 463) noticed how the χ2, G2, T 2, NM2 and GM2 can all be captured
with one general formula. The additional variable lambda (λ) was then investigated, and they settled
on a λ of 2/3.

By setting λ to different values, we get the different tests:

• λ = 1Pearson chi-square

• λ = 0G/Wilks/Likelihood-Ratio

• λ = − 1
2Freeman-Tukey

• λ = −1Mod-Log-Likelihood

• λ = −2Neyman

• λ = 2
3Cressie-Read

This function is shown in this YouTube video and the test is also described at PeterStatistics.com

Usage

ts_powerdivergence_gof(
data,
expCounts = NULL,
lambd = c("cressie-read", "g", "mod-log", "freeman-tukey", "neyman"),
cc = c("none", "yates", "yates2", "pearson", "williams")

)

Arguments

data A vector or dataframe with the data

expCounts Optional dataframe with the categories and expected counts

lambd Optional either name of test or specific value. Either "cressie-read" (default),
"g", "mod-log", "freeman-tukey", or "neyman"

cc Optional continuity correction. Either "none" (default), "yates", "pearson", or
"williams"

https://youtu.be/ghvDQZrMruY
https://peterstatistics.com/Terms/Tests/PowerDivergence.html
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Details

The formula used is (Cressie & Read, 1984, p. 442):

χ2
C =


2×

∑k
i=1 Fi × ln

(
Fi

Ei

)
if λ = 0

2×
∑k

i=1 Ei × ln
(

Ei

Fi

)
if λ = −1

2
λ×(λ+1) ×

∑k
i=1 Fi ×

((
Fi

Ei

)λ
− 1

)
else

df = k − 1

sig. = 1− χ2
(
χ2
C , df

)
With:

n =

r∑
i=1

c∑
j=1

Fi,j

Ei =
n

k

Symbols used:

• k the number of categories

• Fi the observed count of category i

• Ei the expected count of category i

• n the sum of all counts

• χ2 (. . . ) the chi-square cumulative density function

Cressie and Read (1984, p. 463) suggest to use λ = 2
3 , which is therefor the default in this function.

The Pearson chi-square statistic can be obtained by setting λ = 1.

The Freeman-Tukey test will be same as setting lambda to − 1
2 .

Neyman test will be same as setting lambda to −2.

The Yates continuity correction (cc="yates") is calculated using (Yates, 1934, p. 222):

F ∗
i =


Fi − 0.5 if Fi > Ei

Fi + 0.5 if Fi < Ei

Fi if Fi = Ei

In some cases the Yates correction is slightly changed to (yates2) (Allen, 1990, p. 523):

F ∗
i =


Fi − 0.5 if Fi − 0.5 > Ei

Fi + 0.5 if Fi + 0.5 < Ei

Fi else

Note that the Yates correction is usually only considered if there are only two categories. Some also
argue this correction is too conservative (see for details Haviland (1990)).

The Pearson correction (cc="pearson") is calculated using (E.S. Pearson, 1947, p. 157):

χ2
adj = χ2

C × n− 1

n
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The Williams correction (cc="williams") is calculated using (Williams, 1976, p. 36):

χ2
adj =

χ2
C

q

With:

q = 1 +
k2 − 1

6× n× df

The formula is also used by McDonald (2014, p. 87)

Value

Dataframe with:

statistic the chi-square statistic

df the degrees of freedom

pValue two-sided p-value

minExp the minimum expected count

percBelow5 the percentage of expected counts below 5

test used a description of the test used

Before, After and Alternatives

BBefore this an impression using a frequency table or a visualisation might be helpful: tab_frequency,
for a frequency table vi_bar_simple, for Simple Bar Chart. vi_cleveland_dot_plot, for Cleve-
land Dot Plot. vi_dot_plot, for Dot Plot. vi_pareto_chart, for Pareto Chart. vi_pie, for Pie
Chart.

After this you might an effect size measure: es_cohen_w, for Cohen w. es_cramer_v_gof, for
Cramer’s V for Goodness-of-Fit. es_fei, for Fei. es_jbm_e, for Johnston-Berry-Mielke E.

or perform a post-hoc test: ph_pairwise_bin, for Pairwise Binary Tests. ph_pairwise_gof, for
Pairwise Goodness-of-Fit Tests. ph_residual_gof_bin, for Residuals Tests using Binary tests.
ph_residual_gof_gof, for Residuals Using Goodness-of-Fit Tests.

Alternative tests: ts_pearson_gof, for Pearson Chi-Square Goodness-of-Fit Test. ts_freeman_tukey_gof,
for Freeman-Tukey Test of Goodness-of-Fit. ts_freeman_tukey_read, for Freeman-Tukey-Read
Test of Goodness-of-Fit. ts_g_gof, for G (Likelihood Ratio) Goodness-of-Fit Test. ts_mod_log_likelihood_gof,
for Mod-Log Likelihood Test of Goodness-of-Fit. ts_multinomial_gof, for Multinomial Goodness-
of-Fit Test. ts_neyman_gof, for Neyman Test of Goodness-of-Fit.

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations
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Examples

#Example 1: dataframe
dataFile = "https://peterstatistics.com/Packages/ExampleData/GSS2012a.csv"
df1 <- read.csv(dataFile, sep=",", na.strings=c("", "NA"))
ex1 = df1['mar1']
ts_powerdivergence_gof(ex1)

#Example 2: dataframe with various settings
ex2 = df1['mar1']
eCounts = data.frame(c("MARRIED", "DIVORCED", "NEVER MARRIED", "SEPARATED"), c(5,5,5,5))
ts_powerdivergence_gof(ex2, expCounts=eCounts)
ts_powerdivergence_gof(ex2, expCounts=eCounts, cc="pearson")
ts_powerdivergence_gof(ex2, expCounts=eCounts, cc="williams")

#Example 3: a list
ex3 = c("MARRIED", "DIVORCED", "MARRIED", "SEPARATED", "DIVORCED", "NEVER MARRIED",
"DIVORCED", "DIVORCED", "NEVER MARRIED", "MARRIED", "MARRIED", "MARRIED", "SEPARATED",
"DIVORCED", "NEVER MARRIED", "NEVER MARRIED", "DIVORCED", "DIVORCED", "MARRIED")
ts_powerdivergence_gof(ex3)

ts_powerdivergence_ind

Power Divergence Test of Independence

Description

A test that can be used with two nominal variables to test if they are independent.

There are quite a few tests that can do this. Perhaps the most commonly used is the Pearson chi-
square test (χ2), but also an exact multinomial, G-test (G2), Freeman-Tukey (T 2), Neyman (NM2),
Mod-Log Likelihood (GM2), and Freeman-Tukey-Read test are possible.

Cressie and Read (1984, p. 463) noticed how the χ2, G2, T 2, NM2 and GM2 can all be captured
with one general formula. The additional variable lambda (λ) was then investigated, and they settled
on a λ of 2/3.
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By setting λ to different values, we get the different tests:

• λ = 1Pearson chi-square

• λ = 0G/Wilks/Likelihood-Ratio

• λ = − 1
2Freeman-Tukey

• λ = −1Mod-Log-Likelihood

• λ = −2Neyman

• λ = 2
3Cressie-Read

Usage

ts_powerdivergence_ind(
field1,
field2,
categories1 = NULL,
categories2 = NULL,
cc = NULL,
lambd = 2/3

)

Arguments

field1 list or dataframe with the first categorical field

field2 list or dataframe with the second categorical field

categories1 optional list with order and/or selection for categories of field1

categories2 optional list with order and/or selection for categories of field2

cc optional methdod for continuity correction. Either NULL (default), "yates",
"pearson", "williams".

lambd Optional either name of test or specific value. Default is "cressie-read" i.e.
lambda of 2/3

Details

The formula used is (Cressie & Read, 1984, p. 442):

χ2
C =


2×

∑r
i=1

∑c
j=1

(
Fi,j × ln

(
Fi,j

Ei,j

))
if λ = 0

2×
∑r

i=1

∑c
j=1

(
Ei,j × ln

(
Ei,j

Fi,j

))
if λ = −1

2
λ×(λ+1) ×

∑r
i=1

∑c
j=1 Fi,j ×

((
Fi,j

Ei,j

)λ
− 1

)
else

df = (r − 1)× (c− 1)

sig. = 1− χ2
(
χ2
C , df

)
With:

n =

r∑
i=1

c∑
j=1

Fi,j

Ei,j =
Ri × Cj

n
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Ri =

c∑
j=1

Fi,j

Cj =

r∑
i=1

Fi,j

Symbols used:

• r the number of categories in the first variable (the number of rows)

• c the number of categories in the second variable (the number of columns)

• Fi,j the observed count in row i and column j

• Ei,j the expected count in row i and column j

• Ri the i-th row total

• Cj the j-th column total

• n the sum of all counts

• χ2 (. . . ) the chi-square cumulative density function

Cressie and Read (1984, p. 463) suggest to use λ = 2
3 , which is therefor the default in this function.

The Pearson chi-square statistic can be obtained by setting λ = 1. Pearson’s original formula is
(Pearson, 1900, p. 165):

χ2
P =

r∑
i=1

c∑
j=1

(Fi,j − Ei,j)
2

Ei,j

The Freeman-Tukey test has as a formula (Bishop et al., 2007, p. 513):

T 2 = 4×
r∑

i=1

c∑
j=1

(√
Fi,j −

√
Ei,j

)2
This will be same as setting lambda to − 1

2 . Note that the source for the formula is often quoted to
be from Freeman and Tukey (1950) but couldn’t really find it in that article.

Neyman test formula was very similar to Pearson’s, but the observed and expected counts swapped
(Neyman, 1949, p. 250):

χ2
N =

r∑
i=1

c∑
j=1

(Ei,j − Fi,j)
2

Fi,j

This will be same as setting lambda to −2.

The Yates correction (yates) is calculated using (Yates, 1934, p. 222):

Use instead of Fi,j the adjusted version defined by:

F ∗
i,j =


Fi,j − 0.5 if Fi,j > Ei,j

Fi,j if Fi,j = Ei,j

Fi,j + 0.5 if Fi,j < Ei,j

The Pearson correction (pearson) is calculated using (E.S. Pearson, 1947, p. 157):

χ2
PP = χ2

P × n− 1

n
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The Williams correction (williams) is calculated using (Williams, 1976, p. 36):

χ2
PW =

χ2
P

q

With:

q = 1 +

(
n×

(∑r
i=1

1
Ri

)
− 1
)
×
(
n×

(∑c
j=1

1
Cj

)
− 1
)

6× n× df

Value

A dataframe with:

n the sample size
n rows number of categories used in first field
n col. number of categories used in second field
statistic the test statistic (chi-square value)
df the degrees of freedom
p-value the significance (p-value)
min. exp. the minimum expected count
prop. exp. below 5

proportion of cells with expected count less than 5
test description of the test used

Author(s)
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ts_score_os One-Sample Score Test

Description

A one-sample score test could be used with binary data, to test if the two categories have a signif-
icantly different proportion. It is an approximation of a binomial test, by using a standard normal
distribution. Since the binomial distribution is discrete while the normal is continuous, a so-called
continuity correction can (should?) be applied.

The null hypothesis is usually that the proportions of the two categories in the population are equal
(i.e. 0.5 for each). If the p-value of the test is below the pre-defined alpha level (usually 5% = 0.05)
the null hypothesis is rejected and the two categories differ in proportion significantly.

The input for the function doesn’t have to be a binary variable. A nominal variable can also be used
and the two categories to compare indicated.

A significance in general is the probability of a result as in the sample, or more extreme, if the null
hypothesis is true.

Some info on the different tests can be found in video. This function is shown in this YouTube
video and the test is also described at PeterStatistics.com

Usage

ts_score_os(
data,
p0 = 0.5,
p0Cat = NULL,
codes = NULL,
cc = c("none", "yates")

)

Arguments

data A vector or dataframe with the data

p0 Optional hypothesized proportion for the first category (default is 0.5)

p0Cat Optional the category for which p0 was used

codes Optional vector with the two codes to use

cc optional use of continuity correction. Either "none" (default) or "Yates".

Details

Also sometimes called a ’proportion’ test.

To decide on which category is associated with p0 the following is used:

• If codes are provided, the first code is assumed to be the category for the p0.

• If p0Cat is specified that will be used for p0 and all other categories will be considered as
category 2, this means if there are more than two categories the remaining two or more (besides
p0Cat) will be merged as one large category.

• If neither codes or p0Cat is specified and more than two categories are in the data a warning
is printed and no results.

https://youtu.be/jQ-nSPTGOgE
https://youtu.be/06q7qlTOs-s
https://youtu.be/06q7qlTOs-s
https://peterstatistics.com/Terms/Tests/proportion-one-sample.html
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• If neither codes or p0Cat is specified and there are two categories, p0 is assumed to be for the
category closest matching the p0 value (i.e. if p0 is above 0.5 the category with the highest
count is assumed to be used for p0)

The formula used is (Wilson, 1927):

z =
x− µ

SE

With:
µ = n× p0

SE =
√

µ× (1− p0)

Symbols used:

• x is the number of successes in the sample

• p0 the expected proportion (i.e. the proportion according to the null hypothesis)

If the Yates continuity correction is used the formula changes to (Yates, 1934, p. 222):

zY ates =
|x− µ| − 0.5

SE

The formula used and naming comes from IBM (2021, p. 997) who refer to Agresti, most likeli
Agresti (2013, p. 10)

Value

Dataframe with:

n the sample size

statistic the test value

pValue two-sided p-value

test a description of the test used

Before, After and Alternatives

Before running the test you might first want to get an impression using a frequency table: tab_frequency

After the test you might want an effect size measure: es_cohen_g, for Cohen g es_cohen_h_os,
for Cohen h’ es_alt_ratio, for Alternative Ratio

Alternatives for this test could be: ts_binomial_os, for One-Sample Binomial Test ts_wald_os,
for One-Sample Wald Test

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations
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Examples

#Example 1: Numeric list
ex1 = c(1, 1, 2, 1, 2, 1, 2, 1)
ts_score_os(ex1)
ts_score_os(ex1, p0=0.3)
ts_score_os(ex1, p0=0.3, cc="yates")

#Example 2: dataframe
dataFile = "https://peterstatistics.com/Packages/ExampleData/GSS2012a.csv"
df1 <- read.csv(dataFile, sep=",", na.strings=c("", "NA"))
ts_score_os(df1['sex'])
ts_score_os(df1['mar1'], codes=c("DIVORCED", "NEVER MARRIED"))

ts_scott_smith_owa Scott-Smith Test

Description

Tests if the means (averages) of each category could be the same in the population.

If the p-value is below a pre-defined threshold (usually 0.05), the null hypothesis is rejected, and
there are then at least two categories who will have a different mean on the scaleField score in the
population.

Yiğit and Gökpina (2010, p. 32) concluded that this test is inferior to some other alternatives when
there is heteroscedasticity (variances in the groups not the same) are preferred (for example the
Welch one-way ANOVA).

There are quite some alternatives for this, the stikpet library has Fisher, Welch, James, Box, Scott-
Smith, Brown-Forsythe, Alexander-Govern, Mehrotra modified Brown-Forsythe, Hartung-Agac-
Makabi, Özdemir-Kurt and Wilcox as options. See the notes from ts_fisher_owa() for some discus-
sion on the differences.

Usage

ts_scott_smith_owa(nomField, scaleField, categories = NULL)

Arguments

nomField the groups variable

scaleField the numeric scores variable

categories vector, optional. the categories to use from catField

Details

The formula used (Scott & Smith, 1971, p. 277):

χ2
SS =

k∑
j=1

d2j

df = k

sig. = 1− χ2
(
χ2
SS , df

)
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With:

dj = tj ×

√
nj − 3

nj − 1

tj =
(x̄j − x̄)×√

nj

sj

s2j =

∑nj

i=1 (xi,j − x̄j)
2

nj − 1

x̄j =

∑nj

i=1 xi,j

nj

x̄ =

∑k
j=1 nj × x̄j

n

n =

k∑
j=1

nj

Symbols:

• xi,j the i-th score in category j

• k the number of categories

• nj the sample size of category j

• xj the sample mean of category j

• s2j the sample variance of the scores in category j

• df the degrees of freedom

• χ2 (. . . , . . . ) the cumulative distribution function of the chi-square distribution.

I couldn’t find the chi-square test itself in the original article, but the calculation for an independent
samples test repeated usually indeed leads to a chi-square distribution. The formula and chi-square
distribution can also be found in Adepoju et al. (2016, p. 64), Cavus and Yazici (2020, p. 7) and
Yiğit and Gökpina (2010, p. 17)

Value

A dataframe with:

n the sample size

k the number of categories

statistic the test statistic (chi-square value)

df the degrees of freedom

pValue the significance (p-value)

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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ts_sign_os one-sample sign test

Description

This function will perform one-sample sign test.

This function is shown in this YouTube video and the test is also described at PeterStatistics.com

Usage

ts_sign_os(data, levels = NULL, mu = NULL)

Arguments

data A vector or dataframe

levels optional vector with levels in order

mu optional hypothesized median, otherwise the midrange will be used

Details

The test statistic is calculated using (Stewart, 1941, p. 236):

p = 2×B

(
n,min (n+, n−) ,

1

2

)
Symbols used:

• B (. . . ) is the binomial cumulative distribution function

• n is the number of cases

• n+ is the number of cases above the hypothesized median

• n− is the number of cases below the hypothesized median

• min is the minimum value of the two values

The test is described in Stewart (1941), although there are earlier uses.

The paired version for example was already described by Arbuthnott (1710)

https://youtu.be/Hj15elBte44
https://peterstatistics.com/Terms/Tests/SignOneSample.html
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Value

Dataframe with:

mu the mean tested

p-value he significance (p-value)

test a description of the test used

Before, After and Alternatives

Before this measure you might want an impression using a frequency table or a visualisation:
tab_frequency, for a frequency table vi_bar_stacked_single, or Single Stacked Bar-Chart.
vi_bar_dual_axis, for Dual-Axis Bar Chart.

After this you might want to determine an effect size measure: es_common_language_os, for the
Common Language Effect Size. es_dominance, for the Dominance score. r_rank_biserial_os,
for the Rank-Biserial Correlation

Alternative tests: ts_trinomial_os, for One-Sample Trinomial Test. ts_wilcoxon_os, for One-
Sample Wilcoxon Signed Rank Test.

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Arbuthnott, J. (1710). An argument for divine providence, taken from the constant regularity ob-
serv’d in the births of both sexes. Philosophical Transactions of the Royal Society of London,
27(328), 186–190. https://doi.org/10.1098/rstl.1710.0011

Stewart, W. M. (1941). A note on the power of the sign test. The Annals of Mathematical Statistics,
12(2), 236–239. https://doi.org/10.1214/aoms/1177731755

Examples

#Example 1: Text dataframe
file2 = 'https://peterstatistics.com/Packages/ExampleData/StudentStatistics.csv'
df2 = read.csv(file2, sep=';', na.strings=c("", "NA"))
ex1 = df2[['Teach_Motivate']]
order = c("Fully Disagree", "Disagree", "Neither disagree nor agree", "Agree", "Fully agree")
ts_sign_os(ex1, levels=order)

#Example 2: Numeric data
ex2 = c(1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5)
ts_sign_os(ex2)

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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ts_sign_ps Paired Samples Sign Test

Description

This test compares the number of pairs that have a difference above the hypothesized difference,
with those below the difference. It can be considered an alternative for the paired samples t-test.

Usage

ts_sign_ps(field1, field2, levels = NULL, dmu = 0, method = "exact")

Arguments

field1 the numeric scores of the first variable

field2 the numeric scores of the second variable

levels vector, optional. the levels from field1 and field2

dmu float, optional. The difference according to the null hypothesis (default is 0)

method string, optional. Test to be used. Either "exact" (default), "appr".

Details

If method="exact" the binomial distribution will be used. The formula used is (Dixon & Mood,
1946):

sig. = 2× Bin
(
n,min (npos, nneg) ,

1

2

)
When using the approximation, the standard normal distribution is used (SPSS, 2006, p. 483):

z =
max (npos, nneg)− 0.5× (npos + nneg)− 0.5

0.5×√
npos + nneg

sig. = 2× (1− Φ (|z|))

With:

npos =

n∑
i=1

{
1 if di > dH0

0 if di ≤ dH0

nneg =

n∑
i=1

{
0 if di ≥ dH0

1 if di < dH0

di = xi − yi

Symbols used:

• n is the number of pairs with a difference unequal to zero

• npos the number of pairs with a positive difference

• nneg the number of pairs with a negative difference

• dH0 the difference according to the null hypothesis, usually 0

• xi the i-th score from the first variable
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• yi the i-th score from the second variable

• Bin (. . . , . . . ) the cumulative probability mass function of the binomial distribution

The test was described by Arbuthnott (1710) but with more modern notation see Dixon and Mood
(1946).

Alternatives
library(DescTools)

SignTest(ord1, ord2)

library(EnvStats)

signTest(ord1, ord2, paired=TRUE)

library(BSDA)

SIGN.test(ord1, ord2)

Value

A dataframe with:

n pos the number of scores with a positive difference

n neg the number of scores with a negative difference

statistic the test statistic (only applicable if method="appr")

p-Value the significance (p-value)

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References
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27(328), 186–190. doi:10.1098/rstl.1710.0011

Dixon, W. J., & Mood, A. M. (1946). The statistical sign test. Journal of the American Statistical
Association, 41(236), 557–566. doi:10.1080/01621459.1946.10501898

SPSS. (2006). SPSS 15.0 algorithms.

ts_stuart_maxwell Stuart-Maxwell / Marginal Homogeneity Test

Description

If you are only interested if the overall distribution changed (i.e. if the percentages from each cate-
gory changed or not), you can perform a marginal homogeneity test. There are two that seem to be
quite popular for this, the Stuart-Maxwell test (Stuart, 1955; Maxwell, 1970), and the Bhapkar test
(Bhapkar, 1961; 1966). According Uebersax (2006) (which also has a nice example) the Bhapkar
one is preferred.

Simply put, a marginal homogeneity test, looks at the row vs column proportions. Since in a paired
test, the options are the same, if the row and column proportions are the same, nothing changed
between the two variables.

https://PeterStatistics.com
https://www.youtube.com/stikpet
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Usage

ts_stuart_maxwell(field1, field2, categories = NULL)

Arguments

field1 vector, the first categorical field

field2 vector, the first categorical field

categories vector, optional, order and/or selection for categories of field1 and field2

Details

The formula used is:
χ2
SM = n× d′ × S−1 × d

df = r − 1 = c− 1

sig. = 1− χ2 (χSM )

With:
Si,i = pi,. + p.,i − 2× pi,i

Si,j = − (pi,j + pj,i)

di = pi,. − p.,i

pi,j =
Fi,j

n

d =


d1
d2
. . .
dr−1



S =


S1,1 S1,2 . . . S1,c−1

S2,1 S2,2 . . . S2,c−1

. . . . . . . . . . . .
Sr−1,1 Sr−1,2 . . . Sr−1,c−1


n =

r∑
i=1

c∑
j=1

Fi,j

Symbols used

• r is the number of rows (categories in the first variable)

• c is the number of columns (categories in the second variable)

• n is the total number of scores

• Fi,j is the frequency (count) of scores equal to the i-th category in the first variable, and the
j-th category in the second.

• pi,. The sum of the proportions in row i

• p.,i The sum of the proportions in column i

• d′ is the transpose of the d vector

• S−1 is the inverse of the S matrix.

• χ2 (. . . , . . . ) is the cumulative distribution function of the chi-square distribution
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Note

• the d vector and S matrix are one row (and column) less.

• This test only differs from the Bhapkar test in the calculation of S

• The procedure is found ins Maxwell (1970) which is founded by Stuart (1955).

Value

Dataframe with:

n the sample size

statistic the chi-squared value

df the degrees of freedom used in the test

p-value the significance (p-value)

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Bhapkar, V. P. (1961). Some tests for categorical data. The Annals of Mathematical Statistics, 32(1),
72–83. doi:10.1214/aoms/1177705140

Bhapkar, V. P. (1966). A note on the equivalence of two test criteria for hypotheses in categorical
data. Journal of the American Statistical Association, 61(313), 228–235. doi:10.1080/01621459.1966.10502021

Maxwell, A. E. (1970). Comparing the classification of subjects by two independent judges. The
British Journal of Psychiatry, 116(535), 651–655. doi:10.1192/bjp.116.535.651

Stuart, A. (1955). A test for homogeneity of the marginal distributions in a two-way classification.
Biometrika, 42(3/4), 412–416. doi:10.2307/2333387

Uebersax, J. (2006, August 30). McNemar tests of marginal homogeneity. http://www.john-
uebersax.com/stat/mcnemar.htm

ts_student_t_is Student t Test (Independent Samples)

Description

A test to compare two means. The null hypothesis would be that the means of each category are
equal in the population.

The test assumes that the variances in the population of the scores are the same. If this is not the
case, a Welch t-test could be used. Ruxten (2006) even argues that the Welch t-test should always
be prefered over the Student t-test.

There are four similar tests, with different assumptions.

test equal variance normality
Student yes yes
Welch no yes
Trimmed yes no

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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Yuen-Welch no no

The Trimmed and Yuen-Welch can be found in the ts_trimmed_mean_is(), and the Welch t-test
with the ts_welch_t_is().

Usage

ts_student_t_is(catField, scaleField, categories = NULL, dmu = 0)

Arguments

catField A vector with the categorical data

scaleField A vector with the scores

categories Optional to indicate which two categories of catField to use, otherwise first two
found will be used.

dmu Optional difference according to null hypothesis (default is 0)

Details

The formula used is:

t =
x̄1 − x̄2

SE

df = n1 + n2 − 2

sig. = 2× (1− T (|t| , df))

With:

SE = sp ×
√

1

n1
+

1

n2

sp =

√
(n1 − 1)× s21 + (n2 − 1)× s22

df

s2i =

∑ni

j=1 (xi,j − x̄i)
2

ni − 1

x̄i =

∑ni

j=1 xi,j

ni

Symbols used:

• xi,j the j-th score in category i

• ni the number of scores in category i
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Value

A dataframe with:

n cat. 1 the sample size of the first category
n cat. 2 the sample size of the second category
mean cat. 1 the sample mean of the first category
mean cat. 2 the sample mean of the second category
diff. difference between the two sample means
hyp. diff. hypothesized difference between the two population means
statistic the test statistic (t-value)
df degrees of freedom
pValue the significance (p-value)
test name of test used

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Ruxton, G. D. (2006). The unequal variance t-test is an underused alternative to Student’s t-test and
the Mann–Whitney U test. Behavioral Ecology, 17(4), 688–690. https://doi.org/10.1093/beheco/ark016

Student. (1908). The probable error of a mean. Biometrika, 6(1), 1–25. https://doi.org/10.1093/biomet/6.1.1

Examples

#Example 1: dataframe
dataFile = "https://peterstatistics.com/Packages/ExampleData/GSS2012a.csv"
df1 <- read.csv(dataFile, sep=",", na.strings=c("", "NA"))
ex1 = df1['age']
ex1 = replace(ex1, ex1=="89 OR OLDER", "90")
ts_student_t_is(df1['sex'], ex1)

#Example 2: vectors
scores = c(20,50,80,15,40,85,30,45,70,60, NA, 90,25,40,70,65, NA, 70,98,40)
groups = c("nat.","int.","int.","nat.","int.", "int.","nat.","nat.","int.",
"int.","int.","int.","int.","int.","nat.", "int." ,NA,"nat.","int.","int.")
ts_student_t_is(groups, scores)

ts_student_t_os One-Sample Student t-Test

Description

A test for a single (arithmetic) mean.

The assumption about the population (null hypothesis) for this test is a pre-defined mean, i.e. the
(arithmetic) mean that is expected in the population. If the p-value (significance) is then below a
pre-defined threhold (usually 0.05), the assumption is rejected.

This function is shown in this YouTube video and the test is also described at PeterStatistics.com

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
https://youtu.be/zydBBPT-rOY
https://peterstatistics.com/Terms/Tests/tOneSample.html
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Usage

ts_student_t_os(data, mu = NULL)

Arguments

data A vector or dataframe

mu optional hypothesized mean, otherwise the midrange will be used

Details

The formula used is:
t =

x̄− µH0

SE

sig = 2× (1− T (|t| , df))

With:
df = n− 1

SE =
s√
n

s =

√∑n
i=1 (xi − x̄)

2

n− 1

x̄ =

∑n
i=1 xi

n

Symbols used:

• T (. . . , . . . ) the cumulative distribution function of the t-distribution

• x̄ the sample mean

• µH0
the hypothesized mean in the population

• SE the standard error (i.e. the standard deviation of the sampling distribution)

• df the degrees of freedom

• n the sample size (i.e. the number of scores)

• s the unbiased sample standard deviation

• xi the i-th score

The Student t test (Student, 1908) was described by Gosset under the pseudo name Student.

Value

A dataframe with:

mu the hypothesized mean

sample mean sample mean

statistic test statistic

df degrees of freedom

p-value p-value (sig.)

test used test used
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Before, After and Alternatives

Before this you might want to create a binned frequency table or a visualisation: tab_frequency_bins,
to create a binned frequency table. vi_boxplot_single, for a Box (and Whisker) Plot. vi_histogram,
for a Histogram. vi_stem_and_leaf, for a Stem-and-Leaf Display.

After this you might want an effect size measure: es_cohen_d_os, for for Cohen d’. es_hedges_g_os,
for Hedges g. es_common_language_os, for the Common Language Effect Size.

Alternative Tests: ts_trimmed_mean_os, for One-Sample Trimmed (Yuen or Yuen-Welch) Mean
Test. ts_z_os, for One-Sample Z Test.

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Student. (1908). The probable error of a mean. Biometrika, 6(1), 1–25. https://doi.org/10.1093/biomet/6.1.1

Examples

#Example 1: Numeric dataframe
file2 = 'https://peterstatistics.com/Packages/ExampleData/StudentStatistics.csv'
df2 = read.csv(file2, sep=';', na.strings=c("", "NA"))
ex1 = df2['Gen_Age']
ts_student_t_os(ex1)
ts_student_t_os(ex1, mu=22)

#Example 2: Numeric list
ex2 = c(1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5)
ts_student_t_os(ex2)

ts_student_t_ps Student t Test (Paired Samples)

Description

The assumption about the population (null hypothesis) for this test is a pre-defined difference be-
tween two means, usually zero (i.e. the difference between the (arithmetic) means is zero, they
are the same in the population). If the p-value (significance) is then below a pre-defined threhold
(usually 0.05), the assumption is rejected.

Usage

ts_student_t_ps(field1, field2, dmu = 0)

Arguments

field1 the scores on the first variable

field2 the scores on the second variable

dmu difference according to null hypothesis (default is 0)

https://PeterStatistics.com
https://www.youtube.com/stikpet
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Details

The formula used is:

tp =
d̄− dH0

SE

sig. = 2× (1− T (|tp| , df))

With:
d̄ = x̄1 − x̄2

SE =

√
σs2

n

s2d =

∑n
i=1

(
di − d̄i

)2
n− 1

di = xi,1 − xi,2

d̄ =

∑n
i=1 di
n

Symbols used:

• n the number of pairs (sample size)

• xi,1 the i-th score of the first variable

• xi,2 the i-th score of the second variable

• dH0 the expected difference in the population

• T (. . . , . . . ) the cumulative distribution function of the Student t distribution

Alternatives

R’s stats library

t.test(var1, var2, paired=TRUE)

t.test(var1, var2, paired=TRUE, mu=5)

Value

A dataframe with:

n the number of scores

statistic the test statistic (t-value)

df the degrees of freedom

pValue the significance (p-value)

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Student. (1908). The probable error of a mean. Biometrika, 6(1), 1–25. doi:10.1093/biomet/6.1.1

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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ts_trimmed_mean_is Independent Samples Trimmed/Yuen Mean Test

Description

A test to compare two means. The null hypothesis would be that the means of each category are
equal in the population.

There are four similar tests, with different assumptions.

test equal variance normality
Student yes yes
Welch no yes
Trimmed yes no
Yuen-Welch no no

The Student and Welch are available as separate functions. The Trimmed Means and Yuen-Welch
test are available in this one.

Usage

ts_trimmed_mean_is(
catField,
scaleField,
categories = NULL,
dmu = 0,
trimProp = 0.1,
se = c("yuen", "wilcox")

)

Arguments

catField A vector with the categorical data

scaleField A vector with the scores

categories Optional to indicate which two categories of catField to use, otherwise first two
found will be used.

dmu Optional difference according to null hypothesis (default is 0)

trimProp Optional proportion to trim in total for each category. If for example set to 0.1
then 0.05 from each side for each category will be trimmed. Default is 0.1.

se Optional to indicate which standard error to use. Either "yuen" (default) or
"yuen-dixon".

Details

YUEN
The default se="yuen" will perform a Yuen-Welch test.

The formula used is (Yuen, 1974, p. 167):

t =
x̄t,1 − x̄t,2

SE
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sig = 2× (1− T (|t| , df))

With:

SE =

√
s2w,1

m1
+

s2w,2

m2

s2w,i =
SSDw,i

mi − 1

df =
1

c2

m1−1 + (1−c)2

m2−1

c =

s2w,1

m1

s2w,1

m1
+

s2w,2

m2

x̄t,i =

∑ni−gi
j=gi+1 yi,j

gi = ⌊ni × pt⌋

mi = n−2× gi

SSDw,i = gi × (yi,gi+1 − x̄wi)
2
+ gi × (yi,ni−gi − x̄w,i)

2
+

ni−gi∑
j=g+1

(yi,j − x̄w,i)
2

x̄w,i =
x̄t,i ×mi + gi × (yi,gi+1 + yi,ni−gi)

ni

Symbols used:

• xt,i the trimmed mean of the scores in category i

• xw,i The Winsorized mean of the scores in category i

• SSDw,i the sum of squared deviations from the Winsorized mean of category i

• mi the number of scores in the trimmed data set from category i

• yi,j the j-th score after the scores in category i, after they are sorted from low to high

• pt the proportion of trimming on each side, we can define

YUEN-DIXON
If se="yuen-dixon a trimmed means test will be performed.

The formula used is (Yuen & Dixon, 1973, p. 394):

t =
x̄t,1 − x̄t,2

SE

sig = 2× (1− T (|t| , df))

With:

SE =

√
SSDw,1 + SSDw,2

m1 +m2 − 2
×
(

1

m1
+

1

m2

)
df = m1 +m2 − 2

x̄t,i =

∑ni−gi
j=gi+1 yi,j

gi = ⌊ni × pt⌋
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mi = n−2× gi

SSDw,i = gi × (yi,gi+1 − x̄w,i)
2
+ gi × (yi,ni−gi − x̄w,i)

2
+

ni−gi∑
j=g+1

(yi,j − x̄w,i)
2

x̄w,i =
x̄t,i ×mi + gi × (yi,gi+1 + yi,ni−gi)

ni

Symbols used:

• xti the trimmed mean of the scores in category i

• xwi The Winsorized mean of the scores in category i

• SSDwi the sum of squared deviations from the Winsorized mean of category i

• mi the number of scores in the trimmed data set from category i

• yi,j the j-th score after the scores in category i, after they are sorted from low to high

• pt the proportion of trimming on each side, we can define

Value

A dataframe with:

n cat. 1 the sample size of the first category

n cat. 2 the sample size of the second category
trim mean cat. 1

the sample trimmed mean of the first category
trim mean cat. 2

the sample trimmed mean of the second category

diff. difference between the two sample means

hyp. diff. hypothesized difference between the two population means

statistic the test statistic (t-value)

df degrees of freedom

pValue the significance (p-value)

test name of test used

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Yuen, K. K. (1974). The two-sample trimmed t for unequal population variances. Biometrika,
61(1), 165–170. https://doi.org/10.1093/biomet/61.1.165

Yuen, K. K., & Dixon, W. J. (1973). The approximate behaviour and performance of the two-sample
trimmed t. Biometrika, 60(2), 369–374. https://doi.org/10.2307/2334550
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ts_trimmed_mean_os One-Sample (Yuen or Yuen-Welch) Trimmed Mean Test

Description

A variation on a one-sample Student t-test where the data is first trimmed, and the Winsorized
variance is used.

The assumption about the population for this test is that the mean in the population is equal to the
provide mu value. The test will show the probability of the found test statistic, or more extreme, if
this assumption would be true. If this is below a specific threshold (usually 0.05) the assumption is
rejected.

This function is shown in this YouTube video and the test is also described at PeterStatistics.com

Usage

ts_trimmed_mean_os(data, mu = NULL, trimProp = 0.1, se = "yuen")

Arguments

data A vector or dataframe

mu optional hypothesized trimmed mean, otherwise the midrange will be used

trimProp optional proportion to trim in total (half will be trimmed from each side)

se optional method to use to determine standard error. Either "yuen" (default) or
"wilcox"

Details

The formula used is:
x̄t − µH0

SE

sig = 2× (1− T (|t| , df))

With:

x̄t =

∑n−g
i=g+1 yi

g = ⌊n× pt⌋
m = n− 2× g

SE =

√
SSDw

m
× (m− 1)

or:

SE =

√
SSDw

n−1

(1− 2× pt)×
√
n

SSDw = g × (yg+1 − x̄w)
2
+ g × (yn−g − x̄w)

2
+

n−g∑
i=g+1

(yi − x̄w)
2

x̄w =
x̄t ×m+ g × (yg+1 + yn−g)

n

Symbols used:

https://youtu.be/6OpfniypELY
https://peterstatistics.com/Terms/Tests/TrimmedMeanOneSample.html
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• xt the trimmed mean of the scores
• xw The Winsorized mean
• SSDw the sum of squared deviations from the Winsorized mean
• m the number of scores in the trimmed data set from category i
• yi the i-th score after the scores are sorted from low to high
• p the proportion of trimming on each side, we can define

The test is often also referred to as a Yuen test, or Yuen-Welch test.

The standard error can either be calculated using the first SE, which for example can be found in
Tukey and McLaughlin (1963, p. 342), and seems similar to the independent samples version of
this test as proposed by Yuen (1974, p. 167)

The second version is used in the other libraries, and can be found in Wilcox (2012, p. 157), or
Peró-Cebollero and Guàrdia-Olmos (2013, p. 409).

Value

A dataframe with:

trim. mean the sample trimmed mean
mu hypothesized trimmed mean
SE the standard error
statistic test statistic
df degrees of freedom
p-value p-value (sig.)
test used test used

Before, After and Alternatives

Before this you might want to create a binned frequency table or a visualisation: tab_frequency_bins,
to create a binned frequency table. vi_boxplot_single, for a Box (and Whisker) Plot. vi_histogram,
for a Histogram. vi_stem_and_leaf, for a Stem-and-Leaf Display.

After this you might want an effect size measure: es_cohen_d_os, for for Cohen d’. es_hedges_g_os,
for Hedges g. es_common_language_os, for the Common Language Effect Size.

Alternative Tests: ts_student_t_os, for One-Sample Student t-Test. ts_z_os, for One-Sample Z
Test.

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Peró-Cebollero, M., & Guàrdia-Olmos, J. (2013). The adequacy of different robust statistical tests
in comparing two independent groups. Psicológica, 34, 407–424.

Tukey, J. W., & McLaughlin, D. H. (1963). Less vulnerable confidence and significance procedures
for location based on a single sample: Trimming/Winsorization 1. Sankhyā: The Indian Journal of
Statistics, 25(3), 331–352.

Wilcox, R. R. (2012). Introduction to robust estimation and hypothesis testing (3rd ed.). Academic
Press.

Yuen, K. K. (1974). The two-sample trimmed t for unequal population variances. Biometrika,
61(1), 165–170. doi:10.1093/biomet/61.1.165

https://PeterStatistics.com
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Examples

#Example 1: Numeric dataframe
file2 = 'https://peterstatistics.com/Packages/ExampleData/StudentStatistics.csv'
df2 = read.csv(file2, sep=';', na.strings=c("", "NA"))
#Example 1: Numeric dataframe
ex1 = df2['Gen_Age']
ts_trimmed_mean_os(ex1)
ts_trimmed_mean_os(ex1, mu=23, trimProp=0.15, se="wilcox")

#Example 2: Numeric list
ex2 = c(1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5)
ts_trimmed_mean_os(ex2, trimProp=0.05)

ts_trinomial_os One-Sample Trinomial Test

Description

A test that could be used with ordinal data that includes ties

Similar as a sign-test but instead of ignoring scores that are tied with the hypothesized median they
get included, hence instead of the binomial distribution, this will use the trinomial distribution.

This function is shown in this YouTube video and the test is also described at PeterStatistics.com.

Usage

ts_trinomial_os(data, levels = NULL, mu = NULL)

Arguments

data A vector or dataframe

levels optional list to indicate what values represent

mu optional hypothesized median, otherwise the midrange will be used

Details

The p-value is calculated using (Bian et al., 2009, p. 6):

p = 2×
n∑

i=nd

⌊n−i
2 ⌋∑

j=0

tri ((j, j + i, n− i) , (ppos, pneg, p0))

With:
p0 =

n0

n

ppos = pneg =
1− p0

n

|npos − nneg|

Symbols used:

https://youtu.be/OiVUfX5lRww
https://peterstatistics.com/Terms/Tests/WilcoxonSignedRankOneSample.html
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• n0 the number of scores equal to the hypothesized median

• npos the number of scores above the hypothesized median

• nneg the number of scores below the hypothesized median

• p0 the probability of the a score in the sample being equal to the hypothesized median

• ppos the population proportion of a score being above the hypothesized median

• pneg the population proportion of a score being below the hypothesized median

• tri (. . . , . . . ) the trinomial probability mass function

The paired version of the test is described in Bian et al. (1941), while Zaiontz (n.d.) mentions it can
also be used for one-sample situations.

Value

A dataframe with:

mu he hypothesized median

n-pos the number scores above mu

n-neg the number scores below mu

n-tied the number of scores tied with mu

p-value significance (p-value)

test description of the test used

Before, After and Alternatives

Before this measure you might want an impression using a frequency table or a visualisation:
tab_frequency, for a frequency table vi_bar_stacked_single, or Single Stacked Bar-Chart.
vi_bar_dual_axis, for Dual-Axis Bar Chart.

After this you might want to determine an effect size measure: es_common_language_os, for the
Common Language Effect Size. es_dominance, for the Dominance score. r_rank_biserial_os,
for the Rank-Biserial Correlation

Alternative tests: ts_sign_os, for One-Sample Sign Test. ts_wilcoxon_os, for One-Sample
Wilcoxon Signed Rank Test.

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Bian, G., McAleer, M., & Wong, W.-K. (2009). A trinomial test for paired data when there are
many ties. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.1410589

Zaiontz, C. (n.d.). Trinomial test. Real Statistics Using Excel. Retrieved March 2, 2023, from
https://real-statistics.com/non-parametric-tests/trinomial-test/

https://PeterStatistics.com
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Examples

file2 = 'https://peterstatistics.com/Packages/ExampleData/StudentStatistics.csv'
df2 = read.csv(file2, sep=';', na.strings=c("", "NA"))
#Example 1: Dataframe
ex1 = df2[['Teach_Motivate']]
order = c("Fully Disagree", "Disagree", "Neither disagree nor agree", "Agree", "Fully agree")
ts_trinomial_os(ex1, levels=order)

#Example 2: Numeric data
ex2 = c(1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5)
ts_trinomial_os(ex2)

ts_trinomial_ps Trinomial Test (Paired Samples)

Description

A similar test as the sign test, but also includes the pairs that are tied.

Usage

ts_trinomial_ps(field1, field2, levels = NULL, dmu = 0)

Arguments

field1 the numeric scores of the first variable

field2 the numeric scores of the second variable

levels vector, optional. the levels from field1 and field2

dmu float, optional. The difference according to the null hypothesis (default is 0)

Details

The formula used (Bian et al., 2009, p. 6):

sig. = 2× TRI ((npos, nneg, n0) , (ppos, pneg, p0))

With:

npos =

n∑
i=1

{
1 if di > dH0

0 if di ≤ dH0

nneg =

n∑
i=1

{
0 if di ≥ dH0

1 if di < dH0

n0 =

n∑
i=1

{
1 if di = dH0

0 if di ̸= dH0

di = xi − yi

p0 =
n0

n
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ppos = pneg =
1− p0

2

The cumulative mass function of the trinomial distribution is then calculated using:

TRI ((npos, nneg, n0) , (ppos, pneg, p0)) =

n∑
i=nd

⌊n−i
2 ⌋∑

j=0

tri ((j, j + i, n− j − (j + i)) , (ppos, pneg, p0))

nd = |npos − nneg|

The probability mass function of the trinomial distribution is (Bian et al., 2009, p. 5):

tri = ((na, nb, nc) , (pa, pb, pc)) =
n!

a!× b!× c!
× pna

a × pnb

b × pnc
c

Symbols used:

• n is the number of pairs with a difference unequal to zero

• npos the number of pairs with a difference greater than the null hypothesis

• nneg the number of pairs with a difference greater than the null hypothesis

• n0 the number of pairs with no difference with the null hypothesis

• dH0 the difference according to the null hypothesis, usually 0

• xi the i-th score from the first variable

• yi the i-th score from the second variable

• tri (. . . , . . . ) the probability mass function of the trinomial distribution

Alternatives

library(EMT)

datFrame = na.omit(data.frame(ord1,ord2))

d = datFrame$ord1 - datFrame$ord2

pos = sum(d>0)

neg = sum(d<0)

ties = sum(d==0)

n = pos + neg + ties

p0 = ties/n

p1 = (1 - p0)/2

multinomial.test(c(pos, neg, ties), c(p1, p1, p0))

Value

A dataframe with:

n pos the number of scores with a positive difference

n neg the number of scores with a negative difference

n 0 the number of scores with a no difference

p-Value the significance (p-value)
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ts_wald_os One-Sample Wald Test

Description

A one-sample score test could be used with binary data, to test if the two categories have a signif-
icantly different proportion. It is an approximation of a binomial test, by using a standard normal
distribution. Since the binomial distribution is discrete while the normal is continuous, a so-called
continuity correction can (should?) be applied.

The null hypothesis is usually that the proportions of the two categories in the population are equal
(i.e. 0.5 for each). If the p-value of the test is below the pre-defined alpha level (usually 5% = 0.05)
the null hypothesis is rejected and the two categories differ in proportion significantly.

The input for the function doesn’t have to be a binary variable. A nominal variable can also be used
and the two categories to compare indicated.

A significance in general is the probability of a result as in the sample, or more extreme, if the null
hypothesis is true.

Some info on the different tests can be found in video. This function is shown in this YouTube
video and the test is also described at PeterStatistics.com

Usage

ts_wald_os(data, p0 = 0.5, p0Cat = NULL, codes = NULL, cc = c("none", "yates"))

Arguments

data A vector with the data

p0 Optional hypothesized proportion for the first category (default is 0.5)

p0Cat Optional the category for which p0 was used

codes Optional vector with the two codes to use

cc use of continuity correction (default is "none")

Details

To decide on which category is associated with p0 the following is used:

• If codes are provided, the first code is assumed to be the category for the p0.

• If p0Cat is specified that will be used for p0 and all other categories will be considered as
category 2, this means if there are more than two categories the remaining two or more (besides
p0Cat) will be merged as one large category.

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
https://youtu.be/jQ-nSPTGOgE
https://youtu.be/1_KPlWx2vLk
https://youtu.be/1_KPlWx2vLk
https://peterstatistics.com/Terms/Tests/SignOneSample.html
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• If neither codes or p0Cat is specified and more than two categories are in the data a warning
is printed and no results.

• If neither codes or p0Cat is specified and there are two categories, p0 is assumed to be for the
category closest matching the p0 value (i.e. if p0 is above 0.5 the category with the highest
count is assumed to be used for p0)

This test differs from the one-sample score test in the calculation of the standard error. For the
‘regular’ version this is based on the expected proportion, while for the Wald version it is done with
the observed proportion.

The formula used (Wald, 1943):

z =
x− µ

SE

With:
µ = n× p0

SE =

√
x×

(
1− x

n

)
Symbols used:

• x is the number of successes in the sample

• p0 the expected proportion (i.e. the proportion according to the null hypothesis)

If the Yates continuity correction is used the formula changes to (Yates, 1934, p. 222):

zY ates =
|x− µ| − 0.5

SE

The formula used in the calculation is the one from IBM (2021, p. 997). IBM refers to Agresti,
most likely Agresti (2013, p. 10), who in turn refer to Wald (1943)

Value

Dataframe with:

n the sample size

statistic the test value

pValue two-sided p-value

test a description of the test used

Before, After and Alternatives

Before running the test you might first want to get an impression using a frequency table: tab_frequency

After the test you might want an effect size measure: es_cohen_g, for Cohen g es_cohen_h_os,
for Cohen h’ es_alt_ratio, for Alternative Ratio

Alternatives for this test could be: ts_binomial_os, for One-Sample Binomial Test ts_score_os,
for One-Sample Score Test

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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Examples

#Example 1: Numeric list
ex1 = c(1, 1, 2, 1, 2, 1, 2, 1)
ts_wald_os(ex1)
ts_wald_os(ex1, p0=0.3)
ts_wald_os(ex1, p0=0.3, cc="yates")

#Example 2: dataframe
dataFile = "https://peterstatistics.com/Packages/ExampleData/GSS2012a.csv"
df1 <- read.csv(dataFile, sep=",", na.strings=c("", "NA"))
ts_wald_os(df1['sex'])
ts_wald_os(df1['mar1'], codes=c("DIVORCED", "NEVER MARRIED"))

ts_welch_owa Welch One-Way ANOVA

Description

Tests if the means (averages) of each category could be the same in the population.

If the p-value is below a pre-defined threshold (usually 0.05), the null hypothesis is rejected, and
there are then at least two categories who will have a different mean on the scaleField score in the
population.

Delacre et al. (2019) recommend to use the Welch ANOVA instead of the classic and Brown-
Forsythe versions, but there are quite some alternatives for this, the stikpet library has Fisher, Welch,
James, Box, Scott-Smith, Brown-Forsythe, Alexander-Govern, Mehrotra modified Brown-Forsythe,
Hartung-Agac-Makabi, Özdemir-Kurt and Wilcox as options. See the notes from ts_fisher_owa()
for some discussion on the differences.

Usage

ts_welch_owa(nomField, scaleField, categories = NULL)

Arguments

nomField the groups variable

scaleField the numeric scores variable

categories vector, optional. the categories to use from catField
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Details

The formula used is (Welch, 1951, pp. 334-335):

Fw =
1

k−1 ×
∑k

j=1 wj × (x̄j − ȳw)
2

1 + 2× λ× k−2
k2−1

df1 = k − 1

df2 =
k2 − 1

3× λ

sig. = 1− F (FW , df1, df2)

With:

λ =

k∑
j=1

(1− hj)
2

nj − 1

ȳw =

∑k
j=1 wj × x̄j∑k

j=1 wj

=

k∑
j=1

hj × x̄j

hj =
wj

w

w =

k∑
j=1

wj

wj =
nj

s2j

s2j =

∑nj

i=1 (xi,j − x̄j)
2

nj − 1

x̄j =

∑nj

i=1 xi,j

nj

Symbols:

• xi,j the i-th score in category j
• k the number of categories
• nj the sample size of category j
• xj the sample mean of category j
• s2j the sample variance of the scores in category j
• wj the weight for category j
• hj the adjusted weight for category j
• dfi the i-th degrees of freedom

The formula can also be written as:

FW =
χ2
Cochran

k − 1 + 2× λ× k−2
k+1

Where χ2
Cochran is the test statistic of the Cochran one-way test

Cavus and Yazici (2020) make a difference between the Welch and the Welch-Aspin ANOVA. The
only difference in the article is that with the Welch 2×(k-2) is used, while in the Welch-Aspin
version 2×k-2. I think this is a mistake in their formula, since the article they refer to from Aspin is
about two means.

Johansen F test (Johansen, 1980) will give the same results
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Value

A dataframe with:

n the sample size

statistic the test statistic (F value)

df1 the degrees of freedom

df2 the degrees of freedom

pValue the significance (p-value)

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References
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2021-008
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ously: Arguments for the use of Welch’s F-test instead of the classical F-test in one-way ANOVA.
International Review of Social Psychology, 32(1), 1–12. doi:10.5334/irsp.198

Johansen, S. (1980). The Welch-James approximation to the distribution of the residual sum of
squares in a weighted linear regression. Biometrika, 67(1), 85–92. doi:10.1093/biomet/67.1.85

Welch, B. L. (1947). The generalization of ‘Student’s’ problem when several different population
variances are involved. Biometrika, 34(1/2), 28–35. doi:10.2307/2332510

Welch, B. L. (1951). On the comparison of several mean values: An alternative approach. Biometrika,
38(3/4), 330–336. doi:10.2307/2332579

ts_welch_t_is Welch t Test (Independent Samples)

Description

A test to compare two means. The null hypothesis would be that the means of each category are
equal in the population.

Unlike the Student t-test, the Welch test does not assume the variances of the two categories to be
equal in the population. Ruxten (2006) even argues that the Welch t-test should always be prefered
over the Student t-test.

There are four similar tests, with different assumptions.

test equal variance normality
Student yes yes
Welch no yes
Trimmed yes no
Yuen-Welch no no

The Trimmed and Yuen-Welch can be found in the ts_trimmed_mean_is(), and the Student t-test
with the ts_student_t_is().

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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Usage

ts_welch_t_is(catField, scaleField, categories = NULL, dmu = 0)

Arguments

catField A vector with the categorical data

scaleField A vector with the scores

categories Optional to indicate which two categories of catField to use, otherwise first two
found will be used.

dmu Optional difference according to null hypothesis (default is 0)

Details

The formula used is:
t =

x̄1 − x̄2

SE

df =
SE4

(s21)
2

n2
1×(n1−1)

+
(s22)

2

n2
2×(n2−1)

sig. = 2× (1− T (|t| , df))

With:

SE =

√
s21
n1

+
s22
n2

s2i =

∑ni

j=1 (xi,j − x̄i)
2

ni − 1

x̄i =

∑ni

j=1 xi,j

ni

Symbols used:

• xi,j the j-th score in category i

• ni the number of scores in category i

Value

A dataframe with:

n cat. 1 the sample size of the first category

n cat. 2 the sample size of the second category

mean cat. 1 the sample mean of the first category

mean cat. 2 the sample mean of the second category

diff. difference between the two sample means

hyp. diff. hypothesized difference between the two population means

statistic the test statistic (t-value)

df degrees of freedom

pValue the significance (p-value)

test name of test used
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Examples

#Example 1: dataframe
dataFile = "https://peterstatistics.com/Packages/ExampleData/GSS2012a.csv"
df1 <- read.csv(dataFile, sep=",", na.strings=c("", "NA"))
ex1 = df1['age']
ex1 = replace(ex1, ex1=="89 OR OLDER", "90")
ts_welch_t_is(df1['sex'], ex1)

#Example 2: vectors
scores = c(20,50,80,15,40,85,30,45,70,60, NA, 90,25,40,70,65, NA, 70,98,40)
groups = c("nat.","int.","int.","nat.","int.", "int.","nat.","nat.","int.",
"int.","int.","int.","int.","int.","nat.", "int." ,NA,"nat.","int.","int.")
ts_welch_t_is(groups, scores)

ts_wilcoxon_os One-Sample Wilcoxon Signed Rank Test

Description

The one-sample Wilcoxon signed rank test is often considered the non-parametric version of a
one-sample t-test. It can be used to determine if the median is significantly different from an hy-
pothesized value. It actually doesn’t always tests this specifically, but more if the mean rank is
significantly different.

If the p-value is the probability of a result as in the sample, or more extreme, if the assumption about
the population would be true. If this is below a certain threshold (usually 0.05) the assumption about
the population is rejected. For this test the assumed median for the population is then incorrect.

Results in software packages for this test can vary, since there are a few different approaches.
Especially if there are so-called ties. See the details for more information.

This function is shown in this YouTube video and the test is also described at PeterStatistics.com.

Usage

ts_wilcoxon_os(
data,
levels = NULL,
mu = NULL,
ties = TRUE,
appr = c("wilcoxon", "exact", "imanz", "imant"),
eqMed = c("wilcoxon", "zsplit", "pratt"),

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
https://youtu.be/1r2lpPkJ1Vo
https://peterstatistics.com/Terms/Tests/WilcoxonSignedRankOneSample.html
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cc = FALSE
)

Arguments

data dataframe with scores as numbers, or if text also provide levels

levels optional vector with levels in order

mu optional hypothesized median, otherwise the midrange will be used

ties optional boolean to use a tie correction (default is True)

appr optional which method to use for approximation (default is "wilcoxon")

eqMed optional method to deal with scores equal to hypMed (default is "wilcoxon")

cc optional boolean to use a continuity correction (default is FALSE)

Details

The unadjusted test statistic is given by:

W =

n+
r∑

i=1

r+i

With:
r = rank(|d|)

di = yi − θ

Symbols used:

• n+
r is the number of ranks with a positive deviation from the hypothesized median

• r+i the i-th rank of the ranks with a positive deviation from the hypothesized median

• θ is the median tested (the hypothesized median).

• yi is the i-th score of the variable after removing scores that were equal to θ

If there are no ties, an exact method can be used, using the Sign Rank Distribution. R has this
available with psignrank(). The exact test can be found in Zaiontz (n.d.)

Approximations

If the sample size is large enough, we can use a normal approximation. What is large enough
varies quite per author. A few examples: n > 8 (slideplayer, 2015), n > 15 (SigMaxl, n.d.), n > 20
(Wikipedia, n.d.), n > 25 (Harris & Hardin, 2013), n > 30 (Winthrop, n.d.) .

The z-statistic is given by (appr="wilcoxon", ties=FALSE, cc=FALSE):

Z =
W − µw

σw

or with a ties correction (appr="wilcoxon", ties=TRUE, cc=FALSE):

Zadj =
W − µw

σ∗
w

With:

µw =
nr × (nr + 1)

4
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σ2
w =

nr × (nr + 1)× (2× nr + 1)

24

σ∗2
w = σ2

w −A

A =

∑k
i=1

(
t3i − ti

)
48

Additional symbols used

• nr is the number of ranks used

• k the number of unique ranks

• ti the frequency of the i-th unique rank

A Yates continuity correction can simply be applied: In case of no ties (appr="wilcoxon", ties=FALSE,
cc=TRUE):

Z =
|W − µw| − 0.5

σw

In case of ties (appr="wilcoxon", ties=TRUE, cc=TRUE):

Zadj =
|W − µw| − 0.5

σ∗
w

An alternative approximation using the Student t distribution is given by Iman (1974, p. 799). The
formula is (appr="imant", ties=FALSE, cc=FALSE):

t =
W − µw√

σ2
w×nr−(W−µw)2

nr−1

or with the ties correction (appr="imant", ties=TRUE, cc=FALSE):

t =
W − µw√

σ∗2
w ×nr−(W−µw)2

nr−1

The two versions for with a continuity correction are: No ties correction, but continuity (appr="imant",
ties=FALSE, cc=TRUE):

t =
|W − µw| − 0.5√

σ2
w×nr−(|W−µw|−0.5)2

nr−1

Both corrections (appr="imant", ties=TRUE, cc=TRUE):

t =
|W − µw| − 0.5√

σ∗2
w ×nr−(|W−µw|−0.5)2

nr−1

Iman (1974, p. 803) also provides a combination of the t-approximation and the regular z-approximation
The equation is given by (appr="imanz"):

ZI =
Z

2
×
(
1 +

√
nr − 1

nr − Z2

)
The Z is any of the previous methods.

Ties with mu
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The default (eqMed="wilcoxon") removes first any scores that are equal to the hypothesized me-
dian. There are two alternative methods for this.Both re-define di to:

di = xi − θ

Where xi is simply the i-th score.

For the z-split method we only need to re-define:

W =

∑nd0
i=1 ri,0
2

+

n+
r∑

i=1

r+i

Where nd0
is the number of scores that equal the hypothesized median, and ri,0 is the rank of the

i-th score that equals the hypothesized median.

In essence we added half the sum of the ranks that were equal to the hypothesized median.

For the z-split method all other calculations than go the same.

For the Pratt (1959) method we also re-define:

µw =
nr × (nr + 1)− nd0

× (nd0
+ 1)

4

σ2
w =

nr × (nr + 1)× (2× nr + 1)− nd0
× (nd0

+ 1)× (2× nd0
+ 1)

24

For the Pratt method, the ties correction still excludes the ties for the scores that equal the hypothe-
sized median, but for the z-split method it will include them.

For both methods now nr = n, where n is the number of scores.

The Pratt (1959) method and z-split method were found in Python’s documentation for scipy’s
Wilcoxon function (scipy, n.d.). They also refer to Cureton (1967) for the Pratt method.

Value

A dataframe with:

mu the hypothesized median according to the null

W the Wilcoxon W value

statistic test statistic

df degrees of freedom (only applicable for Iman t approximation)

pValue significance (p-value)

testUsed description of the test used

Before, After and Alternatives

Before this measure you might want an impression using a frequency table or a visualisation:
tab_frequency, for a frequency table vi_bar_stacked_single, or Single Stacked Bar-Chart.
vi_bar_dual_axis, for Dual-Axis Bar Chart.

After this you might want to determine an effect size measure: es_common_language_os, for the
Common Language Effect Size. es_dominance, for the Dominance score. r_rank_biserial_os,
for the Rank-Biserial Correlation

Alternative tests: ts_sign_os, for One-Sample Sign Test. ts_trinomial_os, for One-Sample
Trinomial Test.
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Examples

#Example 1: Text dataframe
file2 = 'https://peterstatistics.com/Packages/ExampleData/StudentStatistics.csv'
df2 = read.csv(file2, sep=';', na.strings=c("", "NA"))
ex1 = df2[['Teach_Motivate']]
order = c("Fully Disagree", "Disagree", "Neither disagree nor agree", "Agree", "Fully agree")
ts_wilcoxon_os(ex1, levels=order)

#Example 2: Numeric data
ex2 = c(1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5)
ts_wilcoxon_os(ex2)

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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ts_wilcoxon_ps Paired Samples Wilcoxon Signed Rank Test

Description

The paired-sample Wilcoxon signed rank test is often considered the non-parametric version of a
paired-samples t-test. It can be used to determine if the median is significantly different between
the two variables. It actually doesn’t always tests this specifically, but more if the mean rank is
significantly different.

If the p-value is the probability of a result as in the sample, or more extreme, if the assumption about
the population would be true. If this is below a certain threshold (usually 0.05) the assumption about
the population is rejected.

Results in software packages for this test can vary, since there are a few different approaches.
Especially if there are so-called ties.

This function simply determines the differences between the two provided variables, and then passes
these differences along to the one-sample version. See ts_wilcoxon_os() for details on this.

Usage

ts_wilcoxon_ps(
field1,
field2,
levels = NULL,
dmu = 0,
appr = c("wilcoxon", "exact", "imant", "imanz"),
noDiff = c("wilcoxon", "zsplit", "pratt"),
ties = TRUE,
cc = FALSE

)

Arguments

field1 the numeric scores of the first variable

field2 the numeric scores of the second variable

levels vector, optional. the levels from field1 and field2

dmu float, optional. The difference according to the null hypothesis (default is 0)

appr c("wilcoxon", "exact", "imanz", "imant") optional which method to use for ap-
proximation (default is "wilcoxon")

noDiff c("wilcoxon", "pratt", "zsplit") optional method to deal with scores equal on
both variables (default is "wilcoxon")

ties optional boolean to use a tie correction (default is True)

cc optional boolean to use a continuity correction (default is False)
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Details

The unadjusted test statistic is given by:

W = min (Wneg,Wpos)

With:

Wpos =

n∑
i=1

{
ri if di > 0

0 if di ≤ 0

Wneg =

n∑
i=1

{
ri if di < 0

0 if di ≥ 0

di = xi − yi

Symbols used:

• n the number of scores (equal for each variable)

• xi the i-th score on the first variable

• yi the i-th score on the second variable

• ri the i-th rank of the absolute differences (di)

• Wpos is the number of ranks with a positive difference

• Wneg is the number of ranks with a negative difference

The distribution and test for W can now be performed the same way as for the one-sample case.
See ts_wilcoxon_os() for details on the calculations. The di scores are now the one-sample, and the
hypothesized median would be 0.

Alternatives
*R’s stats library *

wilcox.test(ord1, ord2, paired=TRUE, exact=FALSE, correct=TRUE)

wilcox.test(ord1, ord2, paired=TRUE, exact=FALSE, correct=FALSE)

library(coin)

wilcoxsign_test(ord1 ~ ord2, zero.method = "Wilcoxon")

wilcoxsign_test(ord1 ~ ord2, zero.method = "Pratt")

Value

A dataframe with:

nr the number of ranks used in calculation

mu the median according to the null hypothesis

W the Wilcoxon W

statistic the test statistic

df degrees of freedom (only applicable for Iman t approximation)

p-value the significance (p-value)

test description of the test used

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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References

Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics Bulletin, 1(6), 80.
doi:10.2307/3001968

ts_wilcox_owa Wilcox Test

Description

Tests if the means (averages) of each category could be the same in the population.

If the p-value is below a pre-defined threshold (usually 0.05), the null hypothesis is rejected, and
there are then at least two categories who will have a different mean on the scaleField score in the
population.

There are quite some alternatives for this, the stikpet library has Fisher, Welch, James, Box, Scott-
Smith, Brown-Forsythe, Alexander-Govern, Mehrotra modified Brown-Forsythe, Hartung-Agac-
Makabi, Özdemir-Kurt and Wilcox as options. See the notes from ts_fisher_owa() for some discus-
sion on the differences.

Usage

ts_wilcox_owa(nomField, scaleField, categories = NULL)

Arguments

nomField the groups variable

scaleField the numeric scores variable

categories vector, optional. the categories to use from catField

Details

The formula used (Wilcox, 1988, pp. 110-111)

H =

∑k
j=1

(
Wj − W̄

)2
θ̂

df = k − 1

sig. = 1− χ2 (H, df)

With:

Wj = bj × xnj ,j +
1− bj
nj

×
nj−1∑
i=1

xi,j

W̄ =

∑k
j=1 Wj

k

bj =
1 +

√
(nj−1)×(nj×θ̂)

s2j

nj

θ̂ = max
{
s21
n1

,
s22
n2

, . . . ,
s2k
nk

}
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s2j =

∑nj

i=1 (xi,j − x̄j)
2

nj − 1

x̄j =

∑nj

j=1 xi,j

nj

Symbols used:

• xi,j the i-th score in category j

• k the number of categories

• nj the sample size of category j

• x̄j the sample mean of category j

• s2j the sample variance of the scores in category j

• df the degrees of freedom

• χ2 (. . . ) the cumulative density function of the chi-square distribution

The original article has an error in the formula for bj . There are missing brackets. Using the
population version in the article of cj the formula used here was adapted.

Value

A dataframe with:

n the sample size

statistic the test statistic (chi-square value value)

df the degrees of freedom

p-value the significance (p-value)

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Wilcox, R. R. (1988). A new alternative to the ANOVA F and new results on James’s second-order
method. British Journal of Mathematical and Statistical Psychology, 41(1), 109–117. https://doi.org/10.1111/j.2044-
8317.1988.tb00890.x

ts_z_is Independent Samples Z Test

Description

A test to compare two means. It requires the population variances, but if these are unknown for
large enough sample sizes, the sample variances can be used instead.

For smaller sample sizes a t-test (Student, Welch or Trimmed Means) could be used instead.

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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Usage

ts_z_is(
catField,
scaleField,
categories = NULL,
dmu = 0,
sigma1 = NULL,
sigma2 = NULL

)

Arguments

catField A vector with the categorical data

scaleField A vector with the scores

categories Optional to indicate which two categories of catField to use, otherwise first two
found will be used.

dmu Optional difference according to null hypothesis (default is 0)

sigma1 Optional population standard deviation of the first group, if NULL sample re-
sults will be used

sigma2 Optional population standard deviation of the second group, if NULL sample
results will be used

Details

The formula used is:
z =

x̄1 − x̄2

SE

sig. = 2× (1− Φ (|z|))

With:

SE =

√
σ2
1

n1
+

σ2
2

n2

σ2
i ≈ s2i =

∑ni

j=1 (xi,j − x̄i)
2

ni − 1

x̄i =

∑ni

j=1 xi,j

ni

Symbols used:

• xi,j the j-th score in category i

• ni the number of scores in category i

Value

A dataframe with:

n cat. 1 the sample size of the first category

n cat. 2 the sample size of the second category

mean cat. 1 the sample mean of the first category
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mean cat. 2 the sample mean of the second category

diff. difference between the two sample means

hyp. diff. hypothesized difference between the two population means

statistic the test statistic (z-value)

pValue the significance (p-value)

test name of test used

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

Examples

#Example 1: dataframe
dataFile = "https://peterstatistics.com/Packages/ExampleData/GSS2012a.csv"
df1 <- read.csv(dataFile, sep=",", na.strings=c("", "NA"))
ex1 = df1['age']
ex1 = replace(ex1, ex1=="89 OR OLDER", "90")
ts_z_is(df1['sex'], ex1)

#Example 2: vectors
scores = c(20,50,80,15,40,85,30,45,70,60, NA, 90,25,40,70,65, NA, 70,98,40)
groups = c("nat.","int.","int.","nat.","int.", "int.","nat.","nat.","int.",
"int.","int.","int.","int.","int.","nat.", "int." ,NA,"nat.","int.","int.")
ts_z_is(groups, scores)

ts_z_os One-Sample Z Test

Description

This test is often used if there is a large sample size. For smaller sample sizes, a Student t-test is
usually used.

The assumption about the population (null hypothesis) for this test is a pre-defined mean, i.e. the
(arithmetic) mean that is expected in the population. If the p-value (significance) is then below a
pre-defined threhold (usually 0.05), the assumption is rejected.

This function is shown in this YouTube video and the test is also described at PeterStatistics.com

Usage

ts_z_os(data, mu = NULL, sigma = NULL)

Arguments

data A vector or dataframe with the data as numbers

mu optional hypothesized mean, otherwise the midrange will be used

sigma population standard deviation, if NULL sample results will be used

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
https://youtu.be/zq0IjOq-Jzo
https://peterstatistics.com/Terms/Tests/zOneSample.html
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Details

The formula used is:
z =

x̄− µH0

SE

sig = 2× (1− Φ (|z|))

With:
SE =

σ√
n

σ ≈ s =

√∑n
i=1 (xi − x̄)

2

n− 1

x̄ =

∑n
i=1 xi

n

Symbols used:

• Φ (. . . ) the cumulative distribution function of the standard normal distribution

• x̄ the sample mean

• µH0 the hypothesized mean in the population

• SE the standard error (i.e. the standard deviation of the sampling distribution)

• n the sample size (i.e. the number of scores)

• s the unbiased sample standard deviation

• xi the i-th score

Value

A dataframe with:

mu the hypothesized mean

sample.mean the sample mean

statistic the test statistic

pValue the significance (p-value)

testUsed name of test used

Before, After and Alternatives

Before this you might want to create a binned frequency table or a visualisation: tab_frequency_bins,
to create a binned frequency table. vi_boxplot_single, for a Box (and Whisker) Plot. vi_histogram,
for a Histogram. vi_stem_and_leaf, for a Stem-and-Leaf Display.

After this you might want an effect size measure: es_cohen_d_os, for for Cohen d’. es_hedges_g_os,
for Hedges g. es_common_language_os, for the Common Language Effect Size.

Alternative Tests: ts_student_t_os, for One-Sample Student t-Test. ts_trimmed_mean_os, for
One-Sample Trimmed (Yuen or Yuen-Welch) Mean Test.

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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Examples

#Example 1: dataframe
file2 = 'https://peterstatistics.com/Packages/ExampleData/StudentStatistics.csv'
df2 = read.csv(file2, sep=';', na.strings=c("", "NA"))
ex1 = df2['Gen_Age']
ts_z_os(ex1)
ts_z_os(ex1, mu=22, sigma=12.1)

#Example 2: Numeric list
ex2 = c(1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5)
ts_z_os(ex2)

ts_z_ps Z-test (Paired Samples)

Description

This test is often used if there is a large sample size. For smaller sample sizes, a Student t-test is
usually used.

The assumption about the population (null hypothesis) for this test is a pre-defined difference be-
tween two means, usually zero (i.e. the difference between the (arithmetic) means is zero, they
are the same in the population). If the p-value (significance) is then below a pre-defined threhold
(usually 0.05), the assumption is rejected.

Usage

ts_z_ps(field1, field2, dmu = 0, dsigma = NULL)

Arguments

field1 the scores on the first variable

field2 the scores on the second variable

dmu difference according to null hypothesis (default is 0)

dsigma population standard deviation of the difference, if NULL sample results will be
used

Details

The formula used is:

zp =
d̄− dH0

SE

sig. = 2× (1− Φ (|zp|))

With:
d̄ = µ1 − µ2 ≈ x̄1 − x̄2

SE =

√
σ2
d

n
≈
√

σ2
s

n

s2d =

∑n
i=1

(
di − d̄i

)2
n− 1
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di = xi,1 − xi,2

d̄ =

∑n
i=1 di
n

Symbols used:

• n the number of pairs (sample size)
• xi,1 the i-th score of the first variable
• xi,2 the i-th score of the second variable
• dH0 the expected difference in the population
• Φ (. . . ), cumulative density function of the standard normal distribution.

Alternatives
library(DescTools)

dfr = na.omit(data.frame(var1, var2))

ZTest(dfr$var1, dfr$var2, sd_pop=sqrt(var(dfr$var1-dfr$var2)), paired=TRUE)

Value

A dataframe with:

n the number of scores
z the test statistic (z-value)
p-Value the significance (p-value)

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

vi_bar_clustered Clustered / Multiple Bar Chart

Description

A bar-chart is defined as “a graph in which bars of varying height with spaces between them are
used to display data for variables defined by qualities or categories” (Zedeck, 2014, p. 20).

The bars can be split into multiple bars based on another variable. This is then known as a multiple
bar-chart (Kemp, 2004, p. 150) or clustered bar-chart (Brase, 2009, p. 50; Griffith, 2007, p. 168).

It can be defined as “a bar chart for comparing the frequencies of a categorical variable in two or
more situations” (Upton & Cook, 2014, p. 283).

The first field will be placed on the horizontal axis, and the second used for the clusters.

Usage

vi_bar_clustered(
field1,
field2,
order1 = NULL,
order2 = NULL,
percent = c(NULL, "all", "row", "column")

)

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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Arguments

field1 : dataframe field with categories for the rows

field2 : dataframe field with categories for the columns

order1 : optional list with order for categories of field1

order2 : optional list with order for categories of field2

percent : optional which percentages to show. Either "none" (default), "all", "row",
"column"

Value

clustered bar chart

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Brase, C. (2009). Understandable statistics (9th ed.). Houghton MIfflin.

Griffith, A. (2007). SPSS for dummies. Wiley.

Kemp, S. M., & Kemp, S. (2004). Business statistics demystified. McGraw-Hill.

Upton, G., & Cook, I. (2014). Oxford: Dictionary of statistics (3rd ed.). Oxford University Press.

Zedeck, S. (Ed.). (2014). APA dictionary of statistics and research methods. American Psycholog-
ical Association.

Examples

#Example 1: Clustered Bar Chart in percentages
dataFile = "https://peterstatistics.com/Packages/ExampleData/GSS2012a.csv"
df1 <- read.csv(dataFile, sep=",", na.strings=c("", "NA"))
vi_bar_clustered(df1[['mar1']], df1[['sex']], percent="column")

#Example 2: Specified order
orderR = c("DIVORCED", "WIDOWED", "SEPARATED", "MARRIED", "NEVER MARRIED")
orderC = c("MALE", "FEMALE")
vi_bar_clustered(df1[['mar1']], df1[['sex']], order1=orderR, order2=orderC)

vi_bar_dual_axis Dual-Axis Bar Chart

Description

A dual axis bar-chart is a bar-chart with two vertical axis. In this function it will show both the
count and cumulative proportion.

This chart could be used with a single ordinal variable.

The visualisation is also described at PeterStatistics.com

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
https://peterstatistics.com/Terms/Visualisations/bar-chart.html
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Usage

vi_bar_dual_axis(data, varname = NULL)

Arguments

data the data from which to create a Pareto chart

varname a name for the data, if not provided the name of the data variable is used

Value

a chart in the plot window

Before, After and Alternatives

Before the visualisation you might first want to get an impression using a frequency table: tab_frequency,
for a frequency table

After visualisation you might want some descriptive measures: me_consensus, for the Consensus.
me_hodges_lehmann_os, for the Hodges-Lehmann Estimate (One-Sample). me_median, for the
Median. me_quantiles, for Quantiles. me_quartiles, for Quartiles / Hinges. me_quartile_range,
for Interquartile Range, Semi-Interquartile Range and Mid-Quartile Range.

or perform a test: ts_sign_os, for One-Sample Sign Test. ts_trinomial_os, for One-Sample
Trinomial Test. ts_wilcoxon_os, for One-Sample Wilcoxon Signed Rank Test.

Alternatives for this visualisation could be: vi_bar_stacked_single, or Single Stacked Bar-Chart.

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

Examples

#Example 1: dataframe
dataFile = "https://peterstatistics.com/Packages/ExampleData/GSS2012a.csv"
df1 <- read.csv(dataFile, sep=",", na.strings=c("", "NA"))
ex1 = df1['mar1']
vi_bar_dual_axis(ex1);
vi_bar_dual_axis(ex1, varname="marital status");

vi_bar_simple Simple Bar-Chart

Description

A bar-chart is defined as “a graph in which bars of varying height with spaces between them are
used to display data for variables defined by qualities or categories” (Zedeck, 2014, p. 20).

A YouTube video on pie charts.

This function is shown in this YouTube video and the visualisation is also described at PeterStatis-
tics.com

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
https://youtu.be/zT52FTyC6P8
https://youtu.be/_PIc8lDbTUc
https://peterstatistics.com/Terms/Visualisations/bar-chart.html
https://peterstatistics.com/Terms/Visualisations/bar-chart.html
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Usage

vi_bar_simple(data, varname = NULL, height = "count")

Arguments

data A vector or dataframe

varname Optional name for the variable

height Optional to indicate what the height should represent

Details

The function uses the basic R’s graphics library barplot function.

As a guideline for the size of the bar there is a rule of thumb known as the ’three quarter high rule’
(Pitts, 1971). It means that the height of the vertical axis should be 3/4 of the length of the horizontal
axis. So if the horizontal axis is 20 cm long, the vertical axis should be 3/4 * 20 = 15 cm high.

According to Singh (2009) vertical bars (instead of horizontal bars) are preferred since they are
easier on the eye. However if you have long category names some names might become unreadable.
A bar chart with the bars placed horizontally might then be preferred.

One of the earliest found bar-charts from William Playfair (1786) has the bars placed horizontally.
There is an earlier bar chart by Oresme (1486), but that is used more for a theoretical concept, than
for descriptive statistics.

Before, After and Alternatives

Before the visualisation you might first want to get an impression using a frequency table: tab_frequency

After visualisation you might want some descriptive measures: me_mode, for the mode. me_qv, for
Measures of Qualitative Variation.

or perform a test: ts_pearson_gof, for Pearson Chi-Square Goodness-of-Fit Test. ts_freeman_tukey_gof,
for Freeman-Tukey Test of Goodness-of-Fit. ts_freeman_tukey_read, for Freeman-Tukey-Read
Test of Goodness-of-Fit. ts_g_gof, for G (Likelihood Ratio) Goodness-of-Fit Test. ts_mod_log_likelihood_gof,
for Mod-Log Likelihood Test of Goodness-of-Fit. ts_multinomial_gof, for Multinomial Goodness-
of-Fit Test. ts_neyman_gof, for Neyman Test of Goodness-of-Fit. ts_powerdivergence_gof, for
Power Divergence GoF Test.

Alternatives for this visualisation could be: vi_cleveland_dot_plot, for Cleveland Dot Plot.
vi_dot_plot, for Dot Plot. vi_pareto_chart, for Pareto Chart. vi_pie, for Pie Chart.

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Oresme, N. (1486). Tractatus de latitudinibus formarum. (B. Pelacani da Parma, Ed.). Mathaeus
Cerdonis.

Pitts, C. E. (1971). Introduction to educational psychology: An operant conditioning approach.
Crowell.

Playfair, W. (1786). The commercial and political atlas. Debrett; Robinson; and Sewell.

Singh, G. (2009). Map work and practical geography (4th ed). Vikas Publishing House Pvt Ltd.

Zedeck, S. (Ed.). (2014). APA dictionary of statistics and research methods. American Psycholog-
ical Association.

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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Examples

#Example 1: dataframe
dataFile = "https://peterstatistics.com/Packages/ExampleData/GSS2012a.csv"
df1 <- read.csv(dataFile, sep=",", na.strings=c("", "NA"))
ex1 = df1['mar1']
vi_bar_simple(ex1);
vi_bar_simple(ex1, varname="marital status", height="percent");

#Example 2: a list
ex2 = c("MARRIED", "DIVORCED", "MARRIED", "SEPARATED", "DIVORCED", "NEVER MARRIED",
"DIVORCED", "DIVORCED", "NEVER MARRIED", "MARRIED", "MARRIED", "MARRIED", "SEPARATED",
"DIVORCED", "NEVER MARRIED", "NEVER MARRIED", "DIVORCED", "DIVORCED", "MARRIED")
vi_bar_simple(ex2);

vi_bar_stacked_multiple

Multiple Stacked Bar-Chart

Description

To visualise an ordinal variable, it often makes sense to stack the results. Stacking the results creates
a compound bar chart, or sometimes stacked bar chart (Wilkinson, 2005, p. 157) or component bar
chart (Zedeck, 2014, p. 54). It can be defined as: “a bar chart showing multiple bars stacked at each
x-axis category, each representing a value of the stacking variable” (Upton & Cook, 2014, p. 88).

Instead of one bar (see vi_bar_stacked_single()), we can create two or more (one for each group).
This could then be considered a multiple compound bar-chart.

Usage

vi_bar_stacked_multiple(catField, ordField, levels = NULL, ...)

Arguments

catField list or dataframe with the categories

ordField list or dataframe with the scores

levels optional list with the scores in order

... optional, other parameters for use in barplot function

Details

This function is more like a wrapper for the barplot() from R graphics library.

Value

multiple stacked bar-chart

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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References

Upton, G., & Cook, I. (2014). Oxford: Dictionary of statistics (3rd ed.). Oxford University Press.

Wilkinson, L. (2005). The grammar of graphics (2nd ed). Springer.

Examples

file1 = "https://peterstatistics.com/Packages/ExampleData/GSS2012a.csv"
df1 <- read.csv(file1, sep=",", na.strings=c("", "NA"))
vi_bar_stacked_multiple(df1[['mar1']], df1[['accntsci']], ylab= "percent", col=1:5)

cats = c(1, 1, 2, 2, 2, 3, 3, 3, 3)
scor = c(1, 2, 1, 1, 2, 1, 1, 1, 2)
vi_bar_stacked_multiple(cats, scor, ylab= "percent", col=1:5)

vi_bar_stacked_single Single Stacked Bar-Chart

Description

A regular bar-chart but with the bars on top of each other, instead of next to each other. This is
called a compound bar chart, stacked bar chart (Wilkinson, 2005, p. 157) or component bar chart
(Zedeck, 2014, p. 54).

It can be defined as: “a bar chart showing multiple bars stacked at each x-axis category, each
representing a value of the stacking variable” (Upton & Cook, 2014, p. 88).

The visualisation is also described at PeterStatistics.com

Usage

vi_bar_stacked_single(data, catCoding = NULL, orientation = c("h", "v"))

Arguments

data the data from which to create the bar-chart

catCoding optional vector with the order for the bars

orientation optional to indicate horizontal or vertical chart Either "h" (default) or "v"

Details

This function basically uses barplot(...,beside = FALSE) from R’s graphics library

Value

The chart.

https://peterstatistics.com/Terms/Visualisations/bar-chart.html
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Before, After and Alternatives

Before the visualisation you might first want to get an impression using a frequency table: tab_frequency,
for a frequency table

After visualisation you might want some descriptive measures: me_consensus, for the Consensus.
me_hodges_lehmann_os, for the Hodges-Lehmann Estimate (One-Sample). me_median, for the
Median. me_quantiles, for Quantiles. me_quartiles, for Quartiles / Hinges. me_quartile_range,
for Interquartile Range, Semi-Interquartile Range and Mid-Quartile Range.

or perform a test: ts_sign_os, for One-Sample Sign Test. ts_trinomial_os, for One-Sample
Trinomial Test. ts_wilcoxon_os, for One-Sample Wilcoxon Signed Rank Test.

Alternatives for this visualisation could be: vi_bar_dual_axis, for Dual-Axis Bar Chart.

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Upton, G. J. G., & Cook, I. (2014). Dictionary of statistics (3rd ed.). Oxford University Press.

Wilkinson, L. (2005). The grammar of graphics (2nd ed). Springer.

Zedeck, S. (Ed.). (2014). APA dictionary of statistics and research methods. American Psycholog-
ical Association.

Examples

file2 = 'https://peterstatistics.com/Packages/ExampleData/StudentStatistics.csv'
df2 = read.csv(file2, sep=';', na.strings=c("", "NA"))
#Example 1: Text dataframe
ex1 = df2[['Teach_Motivate']]
order = c("Fully Disagree", "Disagree", "Neither disagree nor agree", "Agree", "Fully agree")
vi_bar_stacked_single(ex1, catCoding=order)
vi_bar_stacked_single(ex1, catCoding=order, orientation="v");

#Example 2: Numeric data
ex2 = c(1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5)
vi_bar_stacked_single(ex2);

vi_boxplot_single Box (and Whisker) Plot

Description

A box plot is a little more complex visualisation than a histogram. It shows the five quartiles (e.g.
minimum, 1st quartile, median, 3rd quartile, and maximum). It can also be adjusted to show so-
called outliers.

This function is shown in this YouTube video and the visualisation is described at PeterStatis-
tics.com

Usage

vi_boxplot_single(data, varname = NULL)

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
https://youtu.be/LAlnmEVuZXw
https://peterstatistics.com/Terms/Visualisations/boxPlot.html
https://peterstatistics.com/Terms/Visualisations/boxPlot.html
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Arguments

data list or dataframe

varname optional name to display on vertical axis

Details

This was actually a ’range chart’ (Spear, 1952, p. 166) but somehow it is these days referred to as a
box-and-whisker plot as named by Tukey (1977, p. 39)

The function uses the boxplot() function from the graphics library. If you want to modify more
things you might want to use that function.

Value

boxplot

Before, After and Alternatives

Before this you might want to create a binned frequency table tab_frequency_bins, to create a
binned frequency table.

After this you might want some descriptive measures: me_mode_bin, for Mode for Binned Data.
me_mean, for different types of mean. me_variation, for different Measures of Quantitative Varia-
tion.

Or a perform a test: ts_student_t_os, for One-Sample Student t-Test. ts_trimmed_mean_os, for
One-Sample Trimmed (Yuen or Yuen-Welch) Mean Test. ts_z_os, for One-Sample Z Test.

Alternative Visualisations: vi_histogram, for a Histogram. vi_stem_and_leaf, for a Stem-and-
Leaf Display.

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Spear, M. E. (1952). Charting statistics. McGraw-Hill.

Tukey, J. W. (1977). Exploratory data analysis. Addison-Wesley Pub. Co.

Examples

file2 = 'https://peterstatistics.com/Packages/ExampleData/StudentStatistics.csv'
df2 = read.csv(file2, sep=';', na.strings=c("", "NA"))
#Example 1: dataframe
ex1 = df2['Gen_Age']
vi_boxplot_single(ex1);

#Example 2: Numeric list
ex2 = c(1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5)
vi_boxplot_single(ex2);

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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vi_boxplot_split Split Box Plot

Description

Based on a categorical field the scores for each category are plotted in a separate boxplot and each
of them is placed underneath each other.

See vi_boxplot_single() for more details on boxplots.

Usage

vi_boxplot_split(catField, scaleField, categories = NULL, ...)

Arguments

catField list or dataframe with the categories

scaleField list or dataframe with the scores

categories optional list with categories to use

... other parameters for use in boxplot function

Value

The split boxplot

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

vi_butterfly_chart Butterfly Chart / Tornado Chart / Pyramid Chart

Description

A special case of diverging bar charts when only comparing two categories.

Depending on the ordering of the results different names exist. I’ve chosen to use ’butterfly’ if no
ordering is done, ’pyramid’ if they are ordered from small to large, and ’tornado’ when going from
large to small.

Usage

vi_butterfly_chart(
field1,
field2,
categories1 = NULL,
categories2 = NULL,
variation = "butterfly",
roundHigh = 5

)

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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Arguments

field1 : dataframe field with categories for the rows

field2 : dataframe field with categories for the columns

categories1 : optional list with selection of categories of field1

categories2 : optional list with selection of categories of field2

variation : optional order of the bars. Either "butterfly" (default), "tornado", or "pyramid"

roundHigh : optional to adjust number of tickmarks on horizontal axis

Details

The term butterfly chart can for example be found in Hwang and Yoon (2021, p. 25).

The term tornado diagrom can be found in the guide from the Project Management Institute (2013,
p. 338). The term funnel chart is also sometimes used (for example Jamsa (2020, p. 135)), but this
is also a term sometimes used for a more analytical scatterplot used for some specific analysis.

The term pyramid chart can for example be found in Schwabish (2021, p. 185). It is very often
used for comparing age distributions.

Value

plot

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Hwang, J., & Yoon, Y. (2021). Data analytics and visualization in quality analysis using Tableau.
CRC Press.

Jamsa, K. (2020). Introduction to data mining and analytics: With machine learning in R and
Python. Jones & Bartlett Learning.

Project Management Institute (Ed.). (2013). A guide to the project management body of knowledge
(5th ed.). Project Management Institute, Inc.

Schwabish, J. (2021). Better data visualizations: A guide for scholars, researchers, and wonks.
Columbia University Press.

Examples

#Example
dataFile = "https://peterstatistics.com/Packages/ExampleData/GSS2012a.csv"
df1 <- read.csv(dataFile, sep=",", na.strings=c("", "NA"))
vi_butterfly_chart(df1[['mar1']], df1[['sex']], roundHigh=100)
vi_butterfly_chart(df1[['mar1']], df1[['sex']], variation="tornado", roundHigh=100)
vi_butterfly_chart(df1[['mar1']], df1[['sex']], variation="pyramid", roundHigh=100)

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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vi_cleveland_dot_plot Cleveland Dot Plot

Description

A Cleveland dot plot (Cleveland & McGill, 1987) is a bar chart where instead of bars a dot is placed
at the center of the top of the bar (and then the bars removed). It is a dot plot only showing the top
dot.This requires less ink.

The function simply uses the dotplot() function from the lattice library.

A video on (Cleveland) dot plots is available here.

This function is shown in this YouTube video and the visualisation is also described at PeterStatis-
tics.com

Usage

vi_cleveland_dot_plot(data, size = 2)

Arguments

data the data from which to create the plot

size the size of the dots (default is 2)

Value

chart the Cleveland dot plot

Before, After and Alternatives

Before the visualisation you might first want to get an impression using a frequency table: tab_frequency

After visualisation you might want some descriptive measures: me_mode, for the mode. me_qv, for
Measures of Qualitative Variation.

or perform a test: ts_pearson_gof, for Pearson Chi-Square Goodness-of-Fit Test. ts_freeman_tukey_gof,
for Freeman-Tukey Test of Goodness-of-Fit. ts_freeman_tukey_read, for Freeman-Tukey-Read
Test of Goodness-of-Fit. ts_g_gof, for G (Likelihood Ratio) Goodness-of-Fit Test. ts_mod_log_likelihood_gof,
for Mod-Log Likelihood Test of Goodness-of-Fit. ts_multinomial_gof, for Multinomial Goodness-
of-Fit Test. ts_neyman_gof, for Neyman Test of Goodness-of-Fit. ts_powerdivergence_gof, for
Power Divergence GoF Test.

Alternatives for this visualisation could be: vi_bar_simple, for Simple Bar Chart. vi_dot_plot,
for Dot Plot. vi_pareto_chart, for Pareto Chart. vi_pie, for Pie Chart.

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Cleveland, W. S., & McGill, R. (1984). Graphical perception: Theory, experimentation, and appli-
cation to the development of graphical methods. Journal of the American Statistical Association,
79(387), 531–554. https://doi.org/10.2307/2288400

https://youtu.be/qs1nh0CMiIY
https://youtu.be/K1Jb7XCDcDg
https://peterstatistics.com/Terms/Visualisations/DotPlot.html
https://peterstatistics.com/Terms/Visualisations/DotPlot.html
https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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Examples

#Example 1: dataframe
dataFile = "https://peterstatistics.com/Packages/ExampleData/GSS2012a.csv"
df1 <- read.csv(dataFile, sep=",", na.strings=c("", "NA"))
ex1 = df1['mar1']
vi_cleveland_dot_plot(ex1);

#Example 2: a list
ex2 = c("MARRIED", "DIVORCED", "MARRIED", "SEPARATED", "DIVORCED", "NEVER MARRIED",
"DIVORCED", "DIVORCED", "NEVER MARRIED", "MARRIED", "MARRIED", "MARRIED", "SEPARATED",
"DIVORCED", "NEVER MARRIED", "NEVER MARRIED", "DIVORCED", "DIVORCED", "MARRIED")
vi_cleveland_dot_plot(ex2);

vi_dot_plot Dot Plot

Description

The Oxford Dictionary of Statistics defines a dot plot as "an alternative to a bar chart or line graph
when there are very few data values. Each value is recorded as a dot, so that the frequencies for
each value can easily be counted" (Upton & Cook, 2014, p. 129).

This function uses ggplot2 geom_dotplot() to create a simple dot plot.

A YouTube video on dot plots.

This function is shown in this YouTube video and the visualisation is also described at PeterStatis-
tics.com

Usage

vi_dot_plot(data, stackRatio = 1, dotSize = 1)

Arguments

data the data from which to create the dot plot

stackRatio ratio on how close the dots are to each other

dotSize indicator for how big the dots need to be

Details

In the definition a bar chart is mentioned. A bar chart can be defined as “a graph in which bars of
varying height with spaces between them are used to display data for variables defined by qualities
or categories” (Zedeck, 2014, p. 20). Together this indicates that a dot plot is used for categorical
data.

However, Zedeck sees the dot plot as an alternative name for a scatterplot, which is for continuous
data. A third version comes from the Cambridge Dictionary of Statistics: "A more effective display
than a number of other methods, for example, pie charts and bar charts, for displaying quantitative
data which are labelled" (Everitt, 2004, p. 123). They also show an example where we see a
categorical variable on one axis, and a continuous variable on another.

This function was only for the original definition for categorical data.

https://youtu.be/qs1nh0CMiIY
https://youtu.be/pq3mA9m47p4
https://peterstatistics.com/Terms/Visualisations/DotPlot.html
https://peterstatistics.com/Terms/Visualisations/DotPlot.html
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Value

chart the dot plot

Before, After and Alternatives

Before the visualisation you might first want to get an impression using a frequency table: tab_frequency

After visualisation you might want some descriptive measures: me_mode, for the mode. me_qv, for
Measures of Qualitative Variation.

or perform a test: ts_pearson_gof, for Pearson Chi-Square Goodness-of-Fit Test. ts_freeman_tukey_gof,
for Freeman-Tukey Test of Goodness-of-Fit. ts_freeman_tukey_read, for Freeman-Tukey-Read
Test of Goodness-of-Fit. ts_g_gof, for G (Likelihood Ratio) Goodness-of-Fit Test. ts_mod_log_likelihood_gof,
for Mod-Log Likelihood Test of Goodness-of-Fit. ts_multinomial_gof, for Multinomial Goodness-
of-Fit Test. ts_neyman_gof, for Neyman Test of Goodness-of-Fit. ts_powerdivergence_gof, for
Power Divergence GoF Test.

Alternatives for this visualisation could be: vi_bar_simple, for Simple Bar Chart. vi_cleveland_dot_plot,
for Cleveland Dot Plot. vi_pareto_chart, for Pareto Chart. vi_pie, for Pie Chart.

Author(s)

P. Stikker. Companion Website, YouTube Channel

References

Everitt, B. (2004). The Cambridge dictionary of statistics (2nd ed). Cambridge University Press.

Upton, G. J. G., & Cook, I. (2014). Dictionary of statistics (3rd ed.). Oxford University Press.

Zedeck, S. (Ed.). (2014). APA dictionary of statistics and research methods. American Psycholog-
ical Association.

Examples

data <- c("MARRIED", "DIVORCED", "MARRIED", "SEPARATED", "DIVORCED", "NEVER MARRIED",
"DIVORCED", "DIVORCED", "NEVER MARRIED", "MARRIED", "MARRIED", "MARRIED", "SEPARATED",
"DIVORCED", "NEVER MARRIED", "NEVER MARRIED", "DIVORCED", "DIVORCED", "MARRIED")
vi_dot_plot(data, stackRatio=1.5, dotSize=2)

vi_histogram Histogram

Description

A histogram is a bit like a bar chart for a scale variable. You would create some bins, and then plot
these as bars.

This function is shown in this YouTube video and the visualisation is described at PeterStatis-
tics.com

Usage

vi_histogram(data, xlbl = NULL, ylbl = NULL, ...)

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://youtu.be/4Yty4u5ihJ8
https://peterstatistics.com/Terms/Visualisations/histogram.html
https://peterstatistics.com/Terms/Visualisations/histogram.html
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Arguments

data list or dataframe

xlbl optional label for the horizontal axis

ylbl optional label for the vertical axis

... other parameters for use in hist function

Details

This function is just using some defaults for the hist() function from R’s graphics library.

To set the bins, the breaks argument can be used. This could be a pre-set number based on a
calculation, a specific rule (e.g. bins="sturges"), or a list with the cut-off points.

If your bins are of equal width, a true histogram than actually should show frequency densities
(Pearson, 1895, p. 399). These are the frequencies divided by the bin-width. This can be done
using freq=FALSE parameter.

Value

The histogram

Before, After and Alternatives

Before this you might want to create a binned frequency table tab_frequency_bins, to create a
binned frequency table.

After this you might want some descriptive measures: me_mode_bin, for Mode for Binned Data.
me_mean, for different types of mean. me_variation, for different Measures of Quantitative Varia-
tion.

Or a perform a test: ts_student_t_os, for One-Sample Student t-Test. ts_trimmed_mean_os, for
One-Sample Trimmed (Yuen or Yuen-Welch) Mean Test. ts_z_os, for One-Sample Z Test.

Alternative Visualisations: vi_boxplot_single, for a Box (and Whisker) Plot. vi_stem_and_leaf,
for a Stem-and-Leaf Display.

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Pearson, K. (1895). Contributions to the mathematical theory of evolution. II. Skew variation in
homogeneous material. Philosophical Transactions of the Royal Society of London. (A.), 186,
343–414. doi:10.1098/rsta.1895.0010

Examples

file2 = 'https://peterstatistics.com/Packages/ExampleData/StudentStatistics.csv'
df2 = read.csv(file2, sep=';', na.strings=c("", "NA"))
#Example 1: dataframe
ex1 = df2['Gen_Age']
vi_histogram(ex1);
vi_histogram(ex1, freq=FALSE);

#Example 2: Numeric list

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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ex2 = c(1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5)
vi_histogram(ex2);

vi_histogram_split Split Histogram

Description

Based on a categorical field the scores for each category are plotted in a separate histogram and
each of the histograms is placed underneath each other.

See vi_histogram() for more details on histograms.

Usage

vi_histogram_split(catField, scaleField, categories = NULL, ...)

Arguments

catField list or dataframe with the categories

scaleField list or dataframe with the scores

categories optional list with categories to use

... other parameters for use in geom_histogram function

Value

The split histogram

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

vi_pareto_chart Pareto Chart

Description

The Pareto Chart gets its name from the Pareto Principle, which is named after Vilfredo Pareto.
This principle states that roughly 80% of consequencies come from 20% of causes (Pareto, 1896).

Unfortunately, there is no general agreed upon definition of a Pareto diagram. The most general
description I’ve found was by Kemp and Kemp (2004) who mention it is a name for a bar chart if
the order of the bars have no meaning (i.e. for a nominal variable), and they only mention that often
the bars are then placed in decreasing order. According to some authors a Pareto diagram is any
diagram with the bars in order of size (Joiner, 1995; WhatIs.com, n.d.), while others suggest that
a line representing the cumulative relative frequencies should also be included (Weisstein, 2002).
Upton and Cook (2014) also add that the bars should not have any gaps, but many other authors
ignore this.

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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The following definition by the author is used: a bar chart where the bars are placed in descending
order of frequency. Usually an ogive is added in the chart as well.

An ogive (oh-jive) is: "the graphs of cumulative frequencies" (Kenney, 1939).

A video on Pareto charts is available here.

This function is shown in this YouTube video and the visualisation is also described at PeterStatis-
tics.com

Usage

vi_pareto_chart(data, varname = NULL)

Arguments

data the data from which to create a Pareto chart

varname a name for the data, if not provided the name of the data variable is used

Value

a Pareto chart in the plot window

Before, After and Alternatives

Before the visualisation you might first want to get an impression using a frequency table: tab_frequency

After visualisation you might want some descriptive measures: me_mode, for the mode. me_qv, for
Measures of Qualitative Variation.

or perform a test: ts_pearson_gof, for Pearson Chi-Square Goodness-of-Fit Test. ts_freeman_tukey_gof,
for Freeman-Tukey Test of Goodness-of-Fit. ts_freeman_tukey_read, for Freeman-Tukey-Read
Test of Goodness-of-Fit. ts_g_gof, for G (Likelihood Ratio) Goodness-of-Fit Test. ts_mod_log_likelihood_gof,
for Mod-Log Likelihood Test of Goodness-of-Fit. ts_multinomial_gof, for Multinomial Goodness-
of-Fit Test. ts_neyman_gof, for Neyman Test of Goodness-of-Fit. ts_powerdivergence_gof, for
Power Divergence GoF Test.

Alternatives for this visualisation could be: vi_bar_simple, for Simple Bar Chart. vi_cleveland_dot_plot,
for Cleveland Dot Plot. vi_dot_plot, for Dot Plot. vi_pie, for Pie Chart.

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Joiner. (1995). Pareto charts: Plain & simple. Joiner Associates.

Kemp, S. M., & Kemp, S. (2004). Business statistics demystified. McGraw-Hill.

Kenney, J. F. (1939). Mathematics of statistics; Part one. Chapman & Hall.

Pareto, V. (1896). Cours d’économie politique (Vol. 1). Lausanne.

Upton, G. J. G., & Cook, I. (2014). Dictionary of statistics (3rd ed.). Oxford University Press.

Weisstein, E. W. (2002). CRC concise encyclopedia of mathematics (2nd ed.). Chapman & Hall/CRC.

WhatIs.com. (n.d.). What is Pareto chart (Pareto distribution diagram)? - Definition from WhatIs.com.
Retrieved April 20, 2014, from http://whatis.techtarget.com/definition/Pareto-chart-Pareto-distribution-
diagram

https://youtu.be/kDp5zPfK-Po
https://youtu.be/uTAxQdpZPNI
https://peterstatistics.com/Terms/Visualisations/ParetoChart.html
https://peterstatistics.com/Terms/Visualisations/ParetoChart.html
https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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Examples

#Example 1: dataframe
dataFile = "https://peterstatistics.com/Packages/ExampleData/GSS2012a.csv"
df1 <- read.csv(dataFile, sep=",", na.strings=c("", "NA"))
ex1 = df1['mar1']
vi_pareto_chart(ex1);

#Example 2: a list
ex2 = c("MARRIED", "DIVORCED", "MARRIED", "SEPARATED", "DIVORCED", "NEVER MARRIED",
"DIVORCED", "DIVORCED", "NEVER MARRIED", "MARRIED", "MARRIED", "MARRIED", "SEPARATED",
"DIVORCED", "NEVER MARRIED", "NEVER MARRIED", "DIVORCED", "DIVORCED", "MARRIED")
vi_pareto_chart(ex2);

vi_pie Pie Chart

Description

A pie-chart is a “graphic display in which a circle is cut into wedges with the area of each wedge
being proportional to the percentage of cases in the category represented by that wedge” (Zedeck,
2014, p. 260).

A video on pie charts is available here.

This function is shown in this YouTube video and the visualisation is also described at PeterStatis-
tics.com

Usage

vi_pie(data, labels = c("count", "percent", "both", "none"))

Arguments

data the data for which to create a pie-chart from

labels what to show besides the labels Either "count" (default), "percent", "none", or
"both"

Details

It is possible to either show only the labels (label="none"), the counts (label="counts"), the percent-
ages (label="percent"), or both count and percent (label="both").

The function uses the basic R’s graphics library pie function, rotated and counter clockwise.

The pie-chart is quite popular and often used, but actually has a few disadvantages. It can only show
relative frequencies. To show other frequencies the numbers themselves have to be added. A circle
has 360 degrees, equal to 100%. So by multiplying the relative frequencies with 360, the degrees
for each category can be found. This means that visually the pie-chart can only show the relative
frequencies.

Another disadvantage is when the relative frequencies are close to each other, the differences are
not easily seen in a circle diagram.

As a third disadvantage, when there are many categories the circle diagram will look very busy and
not easily to read.

https://youtu.be/e6JtJsh-6iw
https://youtu.be/VS4Aw4zc9nQ
https://peterstatistics.com/Terms/Visualisations/PieChart.html
https://peterstatistics.com/Terms/Visualisations/PieChart.html
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People also have more difficulty with comparing areas and angles (what you do when looking at a
pie-chart) than comparing heights (what is done with a bar-chart).

Also often a 3D effect is added, but this actually makes comparisons of the slices even more difficult.

he earliest found circle diagram is found on the inlay of a book by William Playfair (1801). The
name ’pie chart’ might come from a misspelling of the word Pi. Pi is often associated with a circle.
It might also simply come from the resemblances with a pie (as in apple-pie). However Srivastava
and Rego (2011) put forward another belief that it is named after a royal French cook Pie, who
served dishes in a pie-chart shape.

Value

chart the pie chart

Before, After and Alternatives

Before the visualisation you might first want to get an impression using a frequency table: tab_frequency

After visualisation you might want some descriptive measures: me_mode, for the mode. me_qv, for
Measures of Qualitative Variation.

or perform a test: ts_pearson_gof, for Pearson Chi-Square Goodness-of-Fit Test. ts_freeman_tukey_gof,
for Freeman-Tukey Test of Goodness-of-Fit. ts_freeman_tukey_read, for Freeman-Tukey-Read
Test of Goodness-of-Fit. ts_g_gof, for G (Likelihood Ratio) Goodness-of-Fit Test. ts_mod_log_likelihood_gof,
for Mod-Log Likelihood Test of Goodness-of-Fit. ts_multinomial_gof, for Multinomial Goodness-
of-Fit Test. ts_neyman_gof, for Neyman Test of Goodness-of-Fit. ts_powerdivergence_gof, for
Power Divergence GoF Test.

Alternatives for this visualisation could be: vi_bar_simple, for Simple Bar Chart. vi_cleveland_dot_plot,
for Cleveland Dot Plot. vi_dot_plot, for Dot Plot. vi_pareto_chart, for Pareto Chart.

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Playfair, W. (1801). The statistical breviary: Shewing the resources of every state and kingdom. T.
Bensley. http://archive.org/details/statisticalbrev00playgoog

Srivastava, T. N., & Rego, S. (2011). Business research methodology. Tata McGraw-Hill.

Zedeck, S. (Ed.). (2014). APA dictionary of statistics and research methods. American Psycholog-
ical Association.

Examples

#Example 1: dataframe
dataFile = "https://peterstatistics.com/Packages/ExampleData/GSS2012a.csv"
df1 <- read.csv(dataFile, sep=",", na.strings=c("", "NA"))
ex1 = df1['mar1']
vi_pie(ex1);
vi_pie(ex1, labels="percent");
vi_pie(ex1, labels="none");
vi_pie(ex1, labels="both");

#Example 2: a list
ex2 = c("MARRIED", "DIVORCED", "MARRIED", "SEPARATED", "DIVORCED", "NEVER MARRIED",

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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"DIVORCED", "DIVORCED", "NEVER MARRIED", "MARRIED", "MARRIED", "MARRIED", "SEPARATED",
"DIVORCED", "NEVER MARRIED", "NEVER MARRIED", "DIVORCED", "DIVORCED", "MARRIED")
vi_pie(ex2);

vi_spine_plot Spine Plot

Description

A spine plot is similar to a multiple stacked bar-chart, but "the difference is that the bars fill the plot
vertically so the shading gives us proportions instead of counts. Also, the width of each bar varies,
reflecting the marginal proportion of observations in each workshop" (Muenchen, 2006, p. 286)

It is a chart you could use when with two nominal variables and do not have a clear independent
and dependent variable. Otherwise a multiple/clustered bar-chart might be preferred.

Usage

vi_spine_plot(field1, field2, categories1 = NULL, categories2 = NULL)

Arguments

field1 : dataframe field with categories for the rows

field2 : dataframe field with categories for the columns

categories1 : optional list with selection of categories of field1

categories2 : optional list with selection of categories of field2

Details

The naming of this diagram is unfortunately not very clear. I use the term ’spine plot’ as a special
case of a Mosaic Plot. Mosaic Plots are often attributed to Hartigan and Kleiner (for example by
Friendly (2002, p. 90)). Earlier versions are actually known, for example Walker (1874, p. PI XX).
Hartigan and Kleiner (1981) start their paper with a Mosaic Plot for a cross table, but end it with
showing Mosaic Plots for multiple dimension cross tables.

A Marimekko Chart is simply an alternative name for the Mosaic Plot, although according to
Wikipedia "mosaic plots can be colored and shaded according to deviations from independence,
whereas Marimekko charts are colored according to the category levels" (Wikipedia, 2022).

The term ’Spine Plot’ itself is often attributed to Hummel, but I’ve been unable to hunt down his
original article: Linked bar charts: Analysing categorical data graphically. Computational Statistics
11: 23–33.

Value

spine plot

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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Examples

#Example
dataFile = "https://peterstatistics.com/Packages/ExampleData/GSS2012a.csv"
df1 <- read.csv(dataFile, sep=",", na.strings=c("", "NA"))
vi_bar_clustered(df1[['mar1']], df1[['sex']], percent="column")

vi_stem_and_leaf Stem-and-Leaf Display

Description

A stem-and-leaf display is defined as: "a method of displaying data in which each observation is
split into two parts labelled the ‘stem’ and the ‘leaf’" (Everitt, 2004, p. 362). A diagram that could
be used to visualize scale variables, created by Tukey (1972, p. 296).

In some variations of this, the cumulative frequencies are also shown, but currently this function
does not provide for that.

This function is shown in this YouTube video and the visualisation is described at PeterStatis-
tics.com

Usage

vi_stem_and_leaf(data, key = NULL)

Arguments

data list with the numeric data

key optional factor to use for the stems

Value

prints the display in console and returns a dataframe with the stems and leafs

https://youtu.be/u4XOYJz-aNE
https://peterstatistics.com/Terms/Visualisations/stemAndLeafDisplay.html
https://peterstatistics.com/Terms/Visualisations/stemAndLeafDisplay.html
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Before, After and Alternatives

Before this you might want to create a binned frequency table tab_frequency_bins, to create a
binned frequency table.

After this you might want some descriptive measures: me_mode_bin, for Mode for Binned Data.
me_mean, for different types of mean. me_variation, for different Measures of Quantitative Varia-
tion.

Or a perform a test: ts_student_t_os, for One-Sample Student t-Test. ts_trimmed_mean_os, for
One-Sample Trimmed (Yuen or Yuen-Welch) Mean Test. ts_z_os, for One-Sample Z Test.

Alternative Visualisations: vi_boxplot_single, for a Box (and Whisker) Plot. vi_histogram, for
a Histogram.

Author(s)

P. Stikker. Companion Website, YouTube Channel, Patreon donations

References

Everitt, B. (2004). The Cambridge dictionary of statistics (2nd ed.). Cambridge University Press.

Tukey, J. W. (1972). Some graphic and semigraphic displays. In T. A. Bancroft & S. A. Brown
(Eds.), Statistical Papers in Honor of George W. Snedecor (pp. 293–316). Iowa State University
Press.

Examples

file2 = 'https://peterstatistics.com/Packages/ExampleData/StudentStatistics.csv'
studentDf = read.csv(file2, sep=';', na.strings=c("", "NA"))
# Example 1: dataframe
ex1 = studentDf[['Gen_Age']]
vi_stem_and_leaf(ex1);

# Example 2: Numeric list
ex2 = c(1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5)
vi_stem_and_leaf(ex2);

https://PeterStatistics.com
https://www.youtube.com/stikpet
https://www.patreon.com/bePatron?u=19398076
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